Commutative semirings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Maša Žaucer.
Created on 2023-02-20.
Last modified on 2024-03-11.
module commutative-algebra.commutative-semirings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import ring-theory.semirings
Idea
A semiring A
is said to be
commutative¶
if its multiplicative operation is commutative, i.e., if xy = yx
for all
x, y ∈ A
.
Definitions
The predicate on semirings of being commutative
module _ {l : Level} (A : Semiring l) where is-commutative-Semiring : UU l is-commutative-Semiring = (x y : type-Semiring A) → mul-Semiring A x y = mul-Semiring A y x is-prop-is-commutative-Semiring : is-prop is-commutative-Semiring is-prop-is-commutative-Semiring = is-prop-iterated-Π 2 ( λ x y → is-set-type-Semiring A (mul-Semiring A x y) (mul-Semiring A y x)) is-commutative-prop-Semiring : Prop l is-commutative-prop-Semiring = ( is-commutative-Semiring , is-prop-is-commutative-Semiring)
The type of commutative semirings
Commutative-Semiring : ( l : Level) → UU (lsuc l) Commutative-Semiring l = Σ (Semiring l) is-commutative-Semiring
Immediate infrastructure for commutative semirings
module _ {l : Level} (A : Commutative-Semiring l) where semiring-Commutative-Semiring : Semiring l semiring-Commutative-Semiring = pr1 A additive-commutative-monoid-Commutative-Semiring : Commutative-Monoid l additive-commutative-monoid-Commutative-Semiring = additive-commutative-monoid-Semiring semiring-Commutative-Semiring multiplicative-monoid-Commutative-Semiring : Monoid l multiplicative-monoid-Commutative-Semiring = multiplicative-monoid-Semiring semiring-Commutative-Semiring set-Commutative-Semiring : Set l set-Commutative-Semiring = set-Semiring semiring-Commutative-Semiring type-Commutative-Semiring : UU l type-Commutative-Semiring = type-Semiring semiring-Commutative-Semiring is-set-type-Commutative-Semiring : is-set type-Commutative-Semiring is-set-type-Commutative-Semiring = is-set-type-Semiring semiring-Commutative-Semiring zero-Commutative-Semiring : type-Commutative-Semiring zero-Commutative-Semiring = zero-Semiring semiring-Commutative-Semiring is-zero-Commutative-Semiring : type-Commutative-Semiring → UU l is-zero-Commutative-Semiring = is-zero-Semiring semiring-Commutative-Semiring is-nonzero-Commutative-Semiring : type-Commutative-Semiring → UU l is-nonzero-Commutative-Semiring = is-nonzero-Semiring semiring-Commutative-Semiring add-Commutative-Semiring : type-Commutative-Semiring → type-Commutative-Semiring → type-Commutative-Semiring add-Commutative-Semiring = add-Semiring semiring-Commutative-Semiring add-Commutative-Semiring' : type-Commutative-Semiring → type-Commutative-Semiring → type-Commutative-Semiring add-Commutative-Semiring' = add-Semiring' semiring-Commutative-Semiring ap-add-Commutative-Semiring : {x x' y y' : type-Commutative-Semiring} → (x = x') → (y = y') → add-Commutative-Semiring x y = add-Commutative-Semiring x' y' ap-add-Commutative-Semiring = ap-add-Semiring semiring-Commutative-Semiring associative-add-Commutative-Semiring : (x y z : type-Commutative-Semiring) → ( add-Commutative-Semiring (add-Commutative-Semiring x y) z) = ( add-Commutative-Semiring x (add-Commutative-Semiring y z)) associative-add-Commutative-Semiring = associative-add-Semiring semiring-Commutative-Semiring left-unit-law-add-Commutative-Semiring : (x : type-Commutative-Semiring) → add-Commutative-Semiring zero-Commutative-Semiring x = x left-unit-law-add-Commutative-Semiring = left-unit-law-add-Semiring semiring-Commutative-Semiring right-unit-law-add-Commutative-Semiring : (x : type-Commutative-Semiring) → add-Commutative-Semiring x zero-Commutative-Semiring = x right-unit-law-add-Commutative-Semiring = right-unit-law-add-Semiring semiring-Commutative-Semiring commutative-add-Commutative-Semiring : (x y : type-Commutative-Semiring) → add-Commutative-Semiring x y = add-Commutative-Semiring y x commutative-add-Commutative-Semiring = commutative-add-Semiring semiring-Commutative-Semiring interchange-add-add-Commutative-Semiring : (x y x' y' : type-Commutative-Semiring) → ( add-Commutative-Semiring ( add-Commutative-Semiring x y) ( add-Commutative-Semiring x' y')) = ( add-Commutative-Semiring ( add-Commutative-Semiring x x') ( add-Commutative-Semiring y y')) interchange-add-add-Commutative-Semiring = interchange-add-add-Semiring semiring-Commutative-Semiring right-swap-add-Commutative-Semiring : (x y z : type-Commutative-Semiring) → ( add-Commutative-Semiring (add-Commutative-Semiring x y) z) = ( add-Commutative-Semiring (add-Commutative-Semiring x z) y) right-swap-add-Commutative-Semiring = right-swap-add-Semiring semiring-Commutative-Semiring left-swap-add-Commutative-Semiring : (x y z : type-Commutative-Semiring) → ( add-Commutative-Semiring x (add-Commutative-Semiring y z)) = ( add-Commutative-Semiring y (add-Commutative-Semiring x z)) left-swap-add-Commutative-Semiring = left-swap-add-Semiring semiring-Commutative-Semiring mul-Commutative-Semiring : (x y : type-Commutative-Semiring) → type-Commutative-Semiring mul-Commutative-Semiring = mul-Semiring semiring-Commutative-Semiring mul-Commutative-Semiring' : (x y : type-Commutative-Semiring) → type-Commutative-Semiring mul-Commutative-Semiring' = mul-Semiring' semiring-Commutative-Semiring one-Commutative-Semiring : type-Commutative-Semiring one-Commutative-Semiring = one-Semiring semiring-Commutative-Semiring left-unit-law-mul-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-Commutative-Semiring one-Commutative-Semiring x = x left-unit-law-mul-Commutative-Semiring = left-unit-law-mul-Semiring semiring-Commutative-Semiring right-unit-law-mul-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-Commutative-Semiring x one-Commutative-Semiring = x right-unit-law-mul-Commutative-Semiring = right-unit-law-mul-Semiring semiring-Commutative-Semiring associative-mul-Commutative-Semiring : (x y z : type-Commutative-Semiring) → mul-Commutative-Semiring (mul-Commutative-Semiring x y) z = mul-Commutative-Semiring x (mul-Commutative-Semiring y z) associative-mul-Commutative-Semiring = associative-mul-Semiring semiring-Commutative-Semiring left-distributive-mul-add-Commutative-Semiring : (x y z : type-Commutative-Semiring) → ( mul-Commutative-Semiring x (add-Commutative-Semiring y z)) = ( add-Commutative-Semiring ( mul-Commutative-Semiring x y) ( mul-Commutative-Semiring x z)) left-distributive-mul-add-Commutative-Semiring = left-distributive-mul-add-Semiring semiring-Commutative-Semiring right-distributive-mul-add-Commutative-Semiring : (x y z : type-Commutative-Semiring) → ( mul-Commutative-Semiring (add-Commutative-Semiring x y) z) = ( add-Commutative-Semiring ( mul-Commutative-Semiring x z) ( mul-Commutative-Semiring y z)) right-distributive-mul-add-Commutative-Semiring = right-distributive-mul-add-Semiring semiring-Commutative-Semiring commutative-mul-Commutative-Semiring : (x y : type-Commutative-Semiring) → mul-Commutative-Semiring x y = mul-Commutative-Semiring y x commutative-mul-Commutative-Semiring = pr2 A multiplicative-commutative-monoid-Commutative-Semiring : Commutative-Monoid l pr1 multiplicative-commutative-monoid-Commutative-Semiring = multiplicative-monoid-Commutative-Semiring pr2 multiplicative-commutative-monoid-Commutative-Semiring = commutative-mul-Commutative-Semiring left-zero-law-mul-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-Commutative-Semiring zero-Commutative-Semiring x = zero-Commutative-Semiring left-zero-law-mul-Commutative-Semiring = left-zero-law-mul-Semiring semiring-Commutative-Semiring right-zero-law-mul-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-Commutative-Semiring x zero-Commutative-Semiring = zero-Commutative-Semiring right-zero-law-mul-Commutative-Semiring = right-zero-law-mul-Semiring semiring-Commutative-Semiring right-swap-mul-Commutative-Semiring : (x y z : type-Commutative-Semiring) → mul-Commutative-Semiring (mul-Commutative-Semiring x y) z = mul-Commutative-Semiring (mul-Commutative-Semiring x z) y right-swap-mul-Commutative-Semiring = right-swap-mul-Commutative-Monoid multiplicative-commutative-monoid-Commutative-Semiring left-swap-mul-Commutative-Semiring : (x y z : type-Commutative-Semiring) → mul-Commutative-Semiring x (mul-Commutative-Semiring y z) = mul-Commutative-Semiring y (mul-Commutative-Semiring x z) left-swap-mul-Commutative-Semiring = left-swap-mul-Commutative-Monoid multiplicative-commutative-monoid-Commutative-Semiring
Operations
Scalar multiplication of elements of a commutative ring by natural numbers
mul-nat-scalar-Commutative-Semiring : ℕ → type-Commutative-Semiring → type-Commutative-Semiring mul-nat-scalar-Commutative-Semiring = mul-nat-scalar-Semiring semiring-Commutative-Semiring ap-mul-nat-scalar-Commutative-Semiring : {m n : ℕ} {x y : type-Commutative-Semiring} → (m = n) → (x = y) → mul-nat-scalar-Commutative-Semiring m x = mul-nat-scalar-Commutative-Semiring n y ap-mul-nat-scalar-Commutative-Semiring = ap-mul-nat-scalar-Semiring semiring-Commutative-Semiring left-zero-law-mul-nat-scalar-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-nat-scalar-Commutative-Semiring 0 x = zero-Commutative-Semiring left-zero-law-mul-nat-scalar-Commutative-Semiring = left-zero-law-mul-nat-scalar-Semiring semiring-Commutative-Semiring right-zero-law-mul-nat-scalar-Commutative-Semiring : (n : ℕ) → mul-nat-scalar-Commutative-Semiring n zero-Commutative-Semiring = zero-Commutative-Semiring right-zero-law-mul-nat-scalar-Commutative-Semiring = right-zero-law-mul-nat-scalar-Semiring semiring-Commutative-Semiring left-unit-law-mul-nat-scalar-Commutative-Semiring : (x : type-Commutative-Semiring) → mul-nat-scalar-Commutative-Semiring 1 x = x left-unit-law-mul-nat-scalar-Commutative-Semiring = left-unit-law-mul-nat-scalar-Semiring semiring-Commutative-Semiring left-nat-scalar-law-mul-Commutative-Semiring : (n : ℕ) (x y : type-Commutative-Semiring) → mul-Commutative-Semiring (mul-nat-scalar-Commutative-Semiring n x) y = mul-nat-scalar-Commutative-Semiring n (mul-Commutative-Semiring x y) left-nat-scalar-law-mul-Commutative-Semiring = left-nat-scalar-law-mul-Semiring semiring-Commutative-Semiring right-nat-scalar-law-mul-Commutative-Semiring : (n : ℕ) (x y : type-Commutative-Semiring) → mul-Commutative-Semiring x (mul-nat-scalar-Commutative-Semiring n y) = mul-nat-scalar-Commutative-Semiring n (mul-Commutative-Semiring x y) right-nat-scalar-law-mul-Commutative-Semiring = right-nat-scalar-law-mul-Semiring semiring-Commutative-Semiring left-distributive-mul-nat-scalar-add-Commutative-Semiring : (n : ℕ) (x y : type-Commutative-Semiring) → mul-nat-scalar-Commutative-Semiring n (add-Commutative-Semiring x y) = add-Commutative-Semiring ( mul-nat-scalar-Commutative-Semiring n x) ( mul-nat-scalar-Commutative-Semiring n y) left-distributive-mul-nat-scalar-add-Commutative-Semiring = left-distributive-mul-nat-scalar-add-Semiring semiring-Commutative-Semiring right-distributive-mul-nat-scalar-add-Commutative-Semiring : (m n : ℕ) (x : type-Commutative-Semiring) → mul-nat-scalar-Commutative-Semiring (m +ℕ n) x = add-Commutative-Semiring ( mul-nat-scalar-Commutative-Semiring m x) ( mul-nat-scalar-Commutative-Semiring n x) right-distributive-mul-nat-scalar-add-Commutative-Semiring = right-distributive-mul-nat-scalar-add-Semiring semiring-Commutative-Semiring
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).