Complex vector spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module linear-algebra.complex-vector-spaces where
Imports
open import complex-numbers.addition-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.field-of-complex-numbers open import complex-numbers.multiplication-complex-numbers open import complex-numbers.raising-universe-levels-complex-numbers open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.vector-spaces
Idea
A complex vector space¶ is a vector space over the Heyting field of complex numbers.
Definition
ℂ-Vector-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) ℂ-Vector-Space l1 l2 = Vector-Space l2 (heyting-field-ℂ l1)
Properties
module _ {l1 l2 : Level} (V : ℂ-Vector-Space l1 l2) where ab-ℂ-Vector-Space : Ab l2 ab-ℂ-Vector-Space = ab-Vector-Space (heyting-field-ℂ l1) V set-ℂ-Vector-Space : Set l2 set-ℂ-Vector-Space = set-Ab ab-ℂ-Vector-Space type-ℂ-Vector-Space : UU l2 type-ℂ-Vector-Space = type-Ab ab-ℂ-Vector-Space add-ℂ-Vector-Space : type-ℂ-Vector-Space → type-ℂ-Vector-Space → type-ℂ-Vector-Space add-ℂ-Vector-Space = add-Ab ab-ℂ-Vector-Space zero-ℂ-Vector-Space : type-ℂ-Vector-Space zero-ℂ-Vector-Space = zero-Ab ab-ℂ-Vector-Space neg-ℂ-Vector-Space : type-ℂ-Vector-Space → type-ℂ-Vector-Space neg-ℂ-Vector-Space = neg-Ab ab-ℂ-Vector-Space mul-ℂ-Vector-Space : ℂ l1 → type-ℂ-Vector-Space → type-ℂ-Vector-Space mul-ℂ-Vector-Space = mul-Vector-Space (heyting-field-ℂ l1) V associative-add-ℂ-Vector-Space : (v w x : type-ℂ-Vector-Space) → add-ℂ-Vector-Space (add-ℂ-Vector-Space v w) x = add-ℂ-Vector-Space v (add-ℂ-Vector-Space w x) associative-add-ℂ-Vector-Space = associative-add-Ab ab-ℂ-Vector-Space left-unit-law-add-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → add-ℂ-Vector-Space zero-ℂ-Vector-Space v = v left-unit-law-add-ℂ-Vector-Space = left-unit-law-add-Ab ab-ℂ-Vector-Space right-unit-law-add-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → add-ℂ-Vector-Space v zero-ℂ-Vector-Space = v right-unit-law-add-ℂ-Vector-Space = right-unit-law-add-Ab ab-ℂ-Vector-Space left-inverse-law-add-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → add-ℂ-Vector-Space (neg-ℂ-Vector-Space v) v = zero-ℂ-Vector-Space left-inverse-law-add-ℂ-Vector-Space = left-inverse-law-add-Ab ab-ℂ-Vector-Space right-inverse-law-add-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → add-ℂ-Vector-Space v (neg-ℂ-Vector-Space v) = zero-ℂ-Vector-Space right-inverse-law-add-ℂ-Vector-Space = right-inverse-law-add-Ab ab-ℂ-Vector-Space commutative-add-ℂ-Vector-Space : (v w : type-ℂ-Vector-Space) → add-ℂ-Vector-Space v w = add-ℂ-Vector-Space w v commutative-add-ℂ-Vector-Space = commutative-add-Ab ab-ℂ-Vector-Space left-unit-law-mul-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (raise-ℂ l1 one-ℂ) v = v left-unit-law-mul-ℂ-Vector-Space = left-unit-law-mul-Vector-Space (heyting-field-ℂ l1) V left-distributive-mul-add-ℂ-Vector-Space : (r : ℂ l1) (v w : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space r (add-ℂ-Vector-Space v w) = add-ℂ-Vector-Space (mul-ℂ-Vector-Space r v) (mul-ℂ-Vector-Space r w) left-distributive-mul-add-ℂ-Vector-Space = left-distributive-mul-add-Vector-Space (heyting-field-ℂ l1) V right-distributive-mul-add-ℂ-Vector-Space : (r s : ℂ l1) (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (r +ℂ s) v = add-ℂ-Vector-Space (mul-ℂ-Vector-Space r v) (mul-ℂ-Vector-Space s v) right-distributive-mul-add-ℂ-Vector-Space = right-distributive-mul-add-Vector-Space (heyting-field-ℂ l1) V associative-mul-ℂ-Vector-Space : (r s : ℂ l1) (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (r *ℂ s) v = mul-ℂ-Vector-Space r (mul-ℂ-Vector-Space s v) associative-mul-ℂ-Vector-Space = associative-mul-Vector-Space (heyting-field-ℂ l1) V left-zero-law-mul-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (raise-ℂ l1 zero-ℂ) v = zero-ℂ-Vector-Space left-zero-law-mul-ℂ-Vector-Space = left-zero-law-mul-Vector-Space (heyting-field-ℂ l1) V right-zero-law-mul-ℂ-Vector-Space : (r : ℂ l1) → mul-ℂ-Vector-Space r zero-ℂ-Vector-Space = zero-ℂ-Vector-Space right-zero-law-mul-ℂ-Vector-Space = right-zero-law-mul-Vector-Space (heyting-field-ℂ l1) V left-negative-law-mul-ℂ-Vector-Space : (r : ℂ l1) (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (neg-ℂ r) v = neg-ℂ-Vector-Space (mul-ℂ-Vector-Space r v) left-negative-law-mul-ℂ-Vector-Space = left-negative-law-mul-Vector-Space (heyting-field-ℂ l1) V right-negative-law-mul-ℂ-Vector-Space : (r : ℂ l1) (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space r (neg-ℂ-Vector-Space v) = neg-ℂ-Vector-Space (mul-ℂ-Vector-Space r v) right-negative-law-mul-ℂ-Vector-Space = right-negative-law-mul-Vector-Space (heyting-field-ℂ l1) V mul-neg-one-ℂ-Vector-Space : (v : type-ℂ-Vector-Space) → mul-ℂ-Vector-Space (neg-ℂ (raise-ℂ l1 one-ℂ)) v = neg-ℂ-Vector-Space v mul-neg-one-ℂ-Vector-Space = mul-neg-one-Vector-Space (heyting-field-ℂ l1) V
The complex numbers are a complex vector space
complex-vector-space-ℂ : (l : Level) → ℂ-Vector-Space l (lsuc l) complex-vector-space-ℂ l = vector-space-heyting-field-Heyting-Field ( heyting-field-ℂ l)
External links
- Complex vector space at Wikidata
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).