Geometric sequences of positive rational numbers
Content created by malarbol.
Created on 2025-04-24.
Last modified on 2025-04-24.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.geometric-sequences-positive-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.sequences open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.arithmetic-sequences-semigroups open import group-theory.powers-of-elements-monoids open import order-theory.strictly-increasing-sequences-strictly-preordered-sets
Idea
A
geometric sequence¶
of
positive rational numbers
is an arithmetic sequence in
the multiplicative semigroup of positive rational numbers. The multplicative
common difference in ℚ⁺
is called the common ratio of the sequence.
Constant sequences are the geometric sequences with common ratio equal to 1
.
The product of two geometric sequences is geometric and the
inverse
of a geometric sequence is geometric; moreover the map from a sequence to its
common ratio commutes with multiplication and inversion.
Definitions
Geometric sequences of positive rational numbers
is-common-ratio-sequence-ℚ⁺ : sequence ℚ⁺ → ℚ⁺ → UU lzero is-common-ratio-sequence-ℚ⁺ = is-common-difference-sequence-Semigroup semigroup-mul-ℚ⁺ is-geometric-sequence-ℚ⁺ : sequence ℚ⁺ → UU lzero is-geometric-sequence-ℚ⁺ = is-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ geometric-sequence-ℚ⁺ : UU lzero geometric-sequence-ℚ⁺ = arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ module _ (u : geometric-sequence-ℚ⁺) where seq-geometric-sequence-ℚ⁺ : sequence ℚ⁺ seq-geometric-sequence-ℚ⁺ = seq-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u is-geometric-seq-geometric-sequence-ℚ⁺ : is-geometric-sequence-ℚ⁺ seq-geometric-sequence-ℚ⁺ is-geometric-seq-geometric-sequence-ℚ⁺ = is-arithmetic-seq-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺ common-ratio-geometric-sequence-ℚ⁺ = common-difference-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u is-common-ratio-geometric-sequence-ℚ⁺ : ( n : ℕ) → ( seq-geometric-sequence-ℚ⁺ (succ-ℕ n)) = ( seq-geometric-sequence-ℚ⁺ n *ℚ⁺ common-ratio-geometric-sequence-ℚ⁺) is-common-ratio-geometric-sequence-ℚ⁺ = is-common-difference-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u initial-term-geometric-sequence-ℚ⁺ : ℚ⁺ initial-term-geometric-sequence-ℚ⁺ = initial-term-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u
The standard geometric sequence of positive rational numbers with initial term a
and common ratio r
module _ (a r : ℚ⁺) where standard-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺ standard-geometric-sequence-ℚ⁺ = standard-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ a r seq-standard-geometric-sequence-ℚ⁺ : sequence ℚ⁺ seq-standard-geometric-sequence-ℚ⁺ = seq-geometric-sequence-ℚ⁺ standard-geometric-sequence-ℚ⁺
Properties
Two geometric sequences with the same initial term and the same common ratio are homotopic
htpy-seq-geometric-sequence-ℚ⁺ : ( u v : geometric-sequence-ℚ⁺) → ( initial-term-geometric-sequence-ℚ⁺ u = initial-term-geometric-sequence-ℚ⁺ v) → ( common-ratio-geometric-sequence-ℚ⁺ u = common-ratio-geometric-sequence-ℚ⁺ v) → seq-geometric-sequence-ℚ⁺ u ~ seq-geometric-sequence-ℚ⁺ v htpy-seq-geometric-sequence-ℚ⁺ = htpy-seq-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺
Any geometric sequence of positive rational numbers is standard
htpy-seq-standard-geometric-sequence-ℚ⁺ : ( u : geometric-sequence-ℚ⁺) → ( seq-standard-geometric-sequence-ℚ⁺ ( initial-term-geometric-sequence-ℚ⁺ u) ( common-ratio-geometric-sequence-ℚ⁺ u)) ~ ( seq-geometric-sequence-ℚ⁺ u) htpy-seq-standard-geometric-sequence-ℚ⁺ = htpy-seq-standard-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺
The nth term of a geometric sequence with initial term a
and common ratio r
is a rⁿ
module _ (a r : ℚ⁺) where abstract compute-standard-geometric-sequence-ℚ⁺ : ( n : ℕ) → ( a *ℚ⁺ power-Monoid monoid-mul-ℚ⁺ n r) = ( seq-standard-geometric-sequence-ℚ⁺ a r n) compute-standard-geometric-sequence-ℚ⁺ zero-ℕ = right-unit-law-mul-ℚ⁺ a compute-standard-geometric-sequence-ℚ⁺ (succ-ℕ n) = ( ap ( mul-ℚ⁺ a) ( power-succ-Monoid monoid-mul-ℚ⁺ n r)) ∙ ( inv ( associative-mul-ℚ⁺ ( a) ( power-Monoid monoid-mul-ℚ⁺ n r) ( r))) ∙ ( ap (λ p → p *ℚ⁺ r) (compute-standard-geometric-sequence-ℚ⁺ n)) module _ (u : geometric-sequence-ℚ⁺) where abstract compute-geometric-sequence-ℚ⁺ : (n : ℕ) → Id ( mul-ℚ⁺ ( initial-term-geometric-sequence-ℚ⁺ u) ( power-Monoid monoid-mul-ℚ⁺ ( n) ( common-ratio-geometric-sequence-ℚ⁺ u))) ( seq-geometric-sequence-ℚ⁺ u n) compute-geometric-sequence-ℚ⁺ n = ( compute-standard-geometric-sequence-ℚ⁺ ( initial-term-geometric-sequence-ℚ⁺ u) ( common-ratio-geometric-sequence-ℚ⁺ u) ( n)) ∙ ( htpy-seq-standard-geometric-sequence-ℚ⁺ u n)
A constant sequence of positive rational numbers is geometric with common ratio equal to 1
module _ (a : ℚ⁺) where is-geometric-const-sequence-ℚ⁺ : is-geometric-sequence-ℚ⁺ (const ℕ a) is-geometric-const-sequence-ℚ⁺ = ( one-ℚ⁺ , λ _ → inv (right-unit-law-mul-ℚ⁺ a)) const-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺ const-geometric-sequence-ℚ⁺ = ( const ℕ a , is-geometric-const-sequence-ℚ⁺)
A geometric sequence of positive rational numbers with common ratio equal to 1
is constant
module _ (u : geometric-sequence-ℚ⁺) (is-one-common-ratio : common-ratio-geometric-sequence-ℚ⁺ u = one-ℚ⁺) where is-constant-seq-geometric-sequence-ℚ⁺ : (n : ℕ) → ( seq-geometric-sequence-ℚ⁺ u n) = ( initial-term-geometric-sequence-ℚ⁺ u) is-constant-seq-geometric-sequence-ℚ⁺ zero-ℕ = refl is-constant-seq-geometric-sequence-ℚ⁺ (succ-ℕ n) = ( is-common-ratio-geometric-sequence-ℚ⁺ u n) ∙ ( ap (mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) is-one-common-ratio) ∙ ( right-unit-law-mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) ∙ ( is-constant-seq-geometric-sequence-ℚ⁺ n)
A geometric sequence of positive rational numbers with common ratio r > 1
is strictly increasing
module _ (u : geometric-sequence-ℚ⁺) (1<r : le-ℚ⁺ one-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)) where le-succ-seq-geometric-sequence-ℚ⁺ : (n : ℕ) → le-ℚ⁺ ( seq-geometric-sequence-ℚ⁺ u n) ( seq-geometric-sequence-ℚ⁺ u (succ-ℕ n)) le-succ-seq-geometric-sequence-ℚ⁺ n = binary-tr ( le-ℚ⁺) ( right-unit-law-mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) ( inv (is-common-ratio-geometric-sequence-ℚ⁺ u n)) ( preserves-le-left-mul-ℚ⁺ ( seq-geometric-sequence-ℚ⁺ u n) ( one-ℚ) ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)) ( 1<r)) is-strictly-increasing-seq-geometric-sequence-ℚ⁺ : is-strictly-increasing-sequence-Strictly-Preordered-Set ( strictly-preordered-set-ℚ⁺) ( seq-geometric-sequence-ℚ⁺ u) is-strictly-increasing-seq-geometric-sequence-ℚ⁺ = is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set ( strictly-preordered-set-ℚ⁺) ( seq-geometric-sequence-ℚ⁺ u) ( le-succ-seq-geometric-sequence-ℚ⁺)
The pointwise product of geometric sequences of positive rational numbers is geometric
Moreover, the common ratio of the product of geometric seqeuences is the product of the common ratios of the sequences.
module _ (u v : geometric-sequence-ℚ⁺) where mul-common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺ mul-common-ratio-geometric-sequence-ℚ⁺ = mul-ℚ⁺ ( common-ratio-geometric-sequence-ℚ⁺ u) ( common-ratio-geometric-sequence-ℚ⁺ v) seq-mul-geometric-sequence-ℚ⁺ : sequence ℚ⁺ seq-mul-geometric-sequence-ℚ⁺ n = mul-ℚ⁺ ( seq-geometric-sequence-ℚ⁺ u n) ( seq-geometric-sequence-ℚ⁺ v n) is-common-ratio-mul-geometric-sequence-ℚ⁺ : is-common-ratio-sequence-ℚ⁺ seq-mul-geometric-sequence-ℚ⁺ mul-common-ratio-geometric-sequence-ℚ⁺ is-common-ratio-mul-geometric-sequence-ℚ⁺ n = ( ap-binary ( mul-ℚ⁺) ( is-common-ratio-geometric-sequence-ℚ⁺ u n) ( is-common-ratio-geometric-sequence-ℚ⁺ v n)) ∙ ( eq-ℚ⁺ ( interchange-law-mul-mul-ℚ ( rational-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)) ( rational-ℚ⁺ (seq-geometric-sequence-ℚ⁺ v n)) ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ v)))) is-geometric-seq-mul-geometric-sequence-ℚ⁺ : is-geometric-sequence-ℚ⁺ seq-mul-geometric-sequence-ℚ⁺ is-geometric-seq-mul-geometric-sequence-ℚ⁺ = mul-common-ratio-geometric-sequence-ℚ⁺ , is-common-ratio-mul-geometric-sequence-ℚ⁺ mul-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺ mul-geometric-sequence-ℚ⁺ = seq-mul-geometric-sequence-ℚ⁺ , is-geometric-seq-mul-geometric-sequence-ℚ⁺ eq-common-ratio-mul-geometric-sequence-ℚ⁺ : ( mul-ℚ⁺ ( common-ratio-geometric-sequence-ℚ⁺ u) ( common-ratio-geometric-sequence-ℚ⁺ v)) = ( common-ratio-geometric-sequence-ℚ⁺ mul-geometric-sequence-ℚ⁺) eq-common-ratio-mul-geometric-sequence-ℚ⁺ = refl
The pointwise inverse of a geometric sequence of positive rational numbers is geometric
Moreover, the common ratio of the inverse of a geometric sequence is the inverse of the common ratio of the sequence.
module _ (u : geometric-sequence-ℚ⁺) where inv-common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺ inv-common-ratio-geometric-sequence-ℚ⁺ = inv-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u) seq-inv-geometric-sequence-ℚ⁺ : sequence ℚ⁺ seq-inv-geometric-sequence-ℚ⁺ = map-sequence inv-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u) is-common-ratio-inv-geometric-sequence-ℚ⁺ : is-common-ratio-sequence-ℚ⁺ seq-inv-geometric-sequence-ℚ⁺ inv-common-ratio-geometric-sequence-ℚ⁺ is-common-ratio-inv-geometric-sequence-ℚ⁺ n = ( ap ( inv-ℚ⁺) ( is-common-ratio-geometric-sequence-ℚ⁺ u n)) ∙ ( distributive-inv-mul-ℚ⁺ ( seq-geometric-sequence-ℚ⁺ u n) ( common-ratio-geometric-sequence-ℚ⁺ u)) is-geometric-seq-inv-geometric-sequence-ℚ⁺ : is-geometric-sequence-ℚ⁺ seq-inv-geometric-sequence-ℚ⁺ is-geometric-seq-inv-geometric-sequence-ℚ⁺ = inv-common-ratio-geometric-sequence-ℚ⁺ , is-common-ratio-inv-geometric-sequence-ℚ⁺ inv-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺ inv-geometric-sequence-ℚ⁺ = seq-inv-geometric-sequence-ℚ⁺ , is-geometric-seq-inv-geometric-sequence-ℚ⁺ eq-common-ratio-inv-geometric-sequence-ℚ⁺ : ( inv-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)) = ( common-ratio-geometric-sequence-ℚ⁺ inv-geometric-sequence-ℚ⁺) eq-common-ratio-inv-geometric-sequence-ℚ⁺ = refl
See also
- Arithmetic sequences in ℚ⁺: arithmetic sequences in the additive semigroup of ℚ⁺;
- Bernoulli’s inequality in ℚ⁺: comparison between arithmetic and geometric sequences in ℚ⁺.
External links
- Geometric progression at Wikidata
- Geometric progressions at Wikipedia
Recent changes
- 2025-04-24. malarbol. Bernoulli’s inequality on the positive rational numbers (#1371).