Geometric sequences of positive rational numbers

Content created by malarbol.

Created on 2025-04-24.
Last modified on 2025-04-24.

{-# OPTIONS --lossy-unification #-}

module elementary-number-theory.geometric-sequences-positive-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers
open import elementary-number-theory.additive-group-of-rational-numbers
open import elementary-number-theory.arithmetic-sequences-positive-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.multiplication-rational-numbers
open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-transport
open import foundation.constant-maps
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.sequences
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import group-theory.arithmetic-sequences-semigroups
open import group-theory.powers-of-elements-monoids

open import order-theory.strictly-increasing-sequences-strictly-preordered-sets

Idea

A geometric sequence of positive rational numbers is an arithmetic sequence in the multiplicative semigroup of positive rational numbers. The multplicative common difference in ℚ⁺ is called the common ratio of the sequence.

Constant sequences are the geometric sequences with common ratio equal to 1. The product of two geometric sequences is geometric and the inverse of a geometric sequence is geometric; moreover the map from a sequence to its common ratio commutes with multiplication and inversion.

Definitions

Geometric sequences of positive rational numbers

is-common-ratio-sequence-ℚ⁺ : sequence ℚ⁺  ℚ⁺  UU lzero
is-common-ratio-sequence-ℚ⁺ =
  is-common-difference-sequence-Semigroup semigroup-mul-ℚ⁺

is-geometric-sequence-ℚ⁺ : sequence ℚ⁺  UU lzero
is-geometric-sequence-ℚ⁺ =
  is-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺

geometric-sequence-ℚ⁺ : UU lzero
geometric-sequence-ℚ⁺ = arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺

module _
  (u : geometric-sequence-ℚ⁺)
  where

  seq-geometric-sequence-ℚ⁺ : sequence ℚ⁺
  seq-geometric-sequence-ℚ⁺ =
    seq-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ u

  is-geometric-seq-geometric-sequence-ℚ⁺ :
    is-geometric-sequence-ℚ⁺
      seq-geometric-sequence-ℚ⁺
  is-geometric-seq-geometric-sequence-ℚ⁺ =
    is-arithmetic-seq-arithmetic-sequence-Semigroup
      semigroup-mul-ℚ⁺
      u

  common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺
  common-ratio-geometric-sequence-ℚ⁺ =
    common-difference-arithmetic-sequence-Semigroup
      semigroup-mul-ℚ⁺
      u

  is-common-ratio-geometric-sequence-ℚ⁺ :
    ( n : ) 
    ( seq-geometric-sequence-ℚ⁺ (succ-ℕ n)) 
    ( seq-geometric-sequence-ℚ⁺ n *ℚ⁺ common-ratio-geometric-sequence-ℚ⁺)
  is-common-ratio-geometric-sequence-ℚ⁺ =
    is-common-difference-arithmetic-sequence-Semigroup
      semigroup-mul-ℚ⁺
      u

  initial-term-geometric-sequence-ℚ⁺ : ℚ⁺
  initial-term-geometric-sequence-ℚ⁺ =
    initial-term-arithmetic-sequence-Semigroup
      semigroup-mul-ℚ⁺
      u

The standard geometric sequence of positive rational numbers with initial term a and common ratio r

module _
  (a r : ℚ⁺)
  where

  standard-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺
  standard-geometric-sequence-ℚ⁺ =
    standard-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺ a r

  seq-standard-geometric-sequence-ℚ⁺ : sequence ℚ⁺
  seq-standard-geometric-sequence-ℚ⁺ =
    seq-geometric-sequence-ℚ⁺ standard-geometric-sequence-ℚ⁺

Properties

Two geometric sequences with the same initial term and the same common ratio are homotopic

htpy-seq-geometric-sequence-ℚ⁺ :
  ( u v : geometric-sequence-ℚ⁺) 
  ( initial-term-geometric-sequence-ℚ⁺ u 
    initial-term-geometric-sequence-ℚ⁺ v) 
  ( common-ratio-geometric-sequence-ℚ⁺ u 
    common-ratio-geometric-sequence-ℚ⁺ v) 
  seq-geometric-sequence-ℚ⁺ u ~
  seq-geometric-sequence-ℚ⁺ v
htpy-seq-geometric-sequence-ℚ⁺ =
  htpy-seq-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺

Any geometric sequence of positive rational numbers is standard

htpy-seq-standard-geometric-sequence-ℚ⁺ :
  ( u : geometric-sequence-ℚ⁺) 
  ( seq-standard-geometric-sequence-ℚ⁺
    ( initial-term-geometric-sequence-ℚ⁺ u)
    ( common-ratio-geometric-sequence-ℚ⁺ u)) ~
  ( seq-geometric-sequence-ℚ⁺ u)
htpy-seq-standard-geometric-sequence-ℚ⁺ =
  htpy-seq-standard-arithmetic-sequence-Semigroup semigroup-mul-ℚ⁺

The nth term of a geometric sequence with initial term a and common ratio r is a rⁿ

module _
  (a r : ℚ⁺)
  where

  abstract
    compute-standard-geometric-sequence-ℚ⁺ :
      ( n : ) 
      ( a *ℚ⁺ power-Monoid monoid-mul-ℚ⁺ n r) 
      ( seq-standard-geometric-sequence-ℚ⁺ a r n)
    compute-standard-geometric-sequence-ℚ⁺ zero-ℕ =
      right-unit-law-mul-ℚ⁺ a
    compute-standard-geometric-sequence-ℚ⁺ (succ-ℕ n) =
      ( ap
        ( mul-ℚ⁺ a)
        ( power-succ-Monoid monoid-mul-ℚ⁺ n r)) 
      ( inv
        ( associative-mul-ℚ⁺
          ( a)
          ( power-Monoid monoid-mul-ℚ⁺ n r)
          ( r))) 
      ( ap  p  p *ℚ⁺ r) (compute-standard-geometric-sequence-ℚ⁺ n))

module _
  (u : geometric-sequence-ℚ⁺)
  where

  abstract
    compute-geometric-sequence-ℚ⁺ :
      (n : ) 
      Id
        ( mul-ℚ⁺
          ( initial-term-geometric-sequence-ℚ⁺ u)
          ( power-Monoid monoid-mul-ℚ⁺
            ( n)
            ( common-ratio-geometric-sequence-ℚ⁺ u)))
        ( seq-geometric-sequence-ℚ⁺ u n)
    compute-geometric-sequence-ℚ⁺ n =
      ( compute-standard-geometric-sequence-ℚ⁺
        ( initial-term-geometric-sequence-ℚ⁺ u)
        ( common-ratio-geometric-sequence-ℚ⁺ u)
        ( n)) 
      ( htpy-seq-standard-geometric-sequence-ℚ⁺ u n)

A constant sequence of positive rational numbers is geometric with common ratio equal to 1

module _
  (a : ℚ⁺)
  where

  is-geometric-const-sequence-ℚ⁺ : is-geometric-sequence-ℚ⁺ (const  a)
  is-geometric-const-sequence-ℚ⁺ =
    ( one-ℚ⁺ , λ _  inv (right-unit-law-mul-ℚ⁺ a))

  const-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺
  const-geometric-sequence-ℚ⁺ =
    ( const  a , is-geometric-const-sequence-ℚ⁺)

A geometric sequence of positive rational numbers with common ratio equal to 1 is constant

module _
  (u : geometric-sequence-ℚ⁺)
  (is-one-common-ratio : common-ratio-geometric-sequence-ℚ⁺ u  one-ℚ⁺)
  where

  is-constant-seq-geometric-sequence-ℚ⁺ :
    (n : ) 
    ( seq-geometric-sequence-ℚ⁺ u n) 
    ( initial-term-geometric-sequence-ℚ⁺ u)
  is-constant-seq-geometric-sequence-ℚ⁺ zero-ℕ = refl
  is-constant-seq-geometric-sequence-ℚ⁺ (succ-ℕ n) =
    ( is-common-ratio-geometric-sequence-ℚ⁺ u n) 
    ( ap (mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) is-one-common-ratio) 
    ( right-unit-law-mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n)) 
    ( is-constant-seq-geometric-sequence-ℚ⁺ n)

A geometric sequence of positive rational numbers with common ratio r > 1 is strictly increasing

module _
  (u : geometric-sequence-ℚ⁺)
  (1<r : le-ℚ⁺ one-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u))
  where

  le-succ-seq-geometric-sequence-ℚ⁺ :
    (n : ) 
    le-ℚ⁺
      ( seq-geometric-sequence-ℚ⁺ u n)
      ( seq-geometric-sequence-ℚ⁺ u (succ-ℕ n))
  le-succ-seq-geometric-sequence-ℚ⁺ n =
    binary-tr
      ( le-ℚ⁺)
      ( right-unit-law-mul-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n))
      ( inv (is-common-ratio-geometric-sequence-ℚ⁺ u n))
      ( preserves-le-left-mul-ℚ⁺
        ( seq-geometric-sequence-ℚ⁺ u n)
        ( one-ℚ)
        ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u))
        ( 1<r))

  is-strictly-increasing-seq-geometric-sequence-ℚ⁺ :
    is-strictly-increasing-sequence-Strictly-Preordered-Set
      ( strictly-preordered-set-ℚ⁺)
      ( seq-geometric-sequence-ℚ⁺ u)
  is-strictly-increasing-seq-geometric-sequence-ℚ⁺ =
    is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set
      ( strictly-preordered-set-ℚ⁺)
      ( seq-geometric-sequence-ℚ⁺ u)
      ( le-succ-seq-geometric-sequence-ℚ⁺)

The pointwise product of geometric sequences of positive rational numbers is geometric

Moreover, the common ratio of the product of geometric seqeuences is the product of the common ratios of the sequences.

module _
  (u v : geometric-sequence-ℚ⁺)
  where

  mul-common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺
  mul-common-ratio-geometric-sequence-ℚ⁺ =
    mul-ℚ⁺
      ( common-ratio-geometric-sequence-ℚ⁺ u)
      ( common-ratio-geometric-sequence-ℚ⁺ v)

  seq-mul-geometric-sequence-ℚ⁺ : sequence ℚ⁺
  seq-mul-geometric-sequence-ℚ⁺ n =
    mul-ℚ⁺
      ( seq-geometric-sequence-ℚ⁺ u n)
      ( seq-geometric-sequence-ℚ⁺ v n)

  is-common-ratio-mul-geometric-sequence-ℚ⁺ :
    is-common-ratio-sequence-ℚ⁺
      seq-mul-geometric-sequence-ℚ⁺
      mul-common-ratio-geometric-sequence-ℚ⁺
  is-common-ratio-mul-geometric-sequence-ℚ⁺ n =
    ( ap-binary
      ( mul-ℚ⁺)
      ( is-common-ratio-geometric-sequence-ℚ⁺ u n)
      ( is-common-ratio-geometric-sequence-ℚ⁺ v n)) 
    ( eq-ℚ⁺
      ( interchange-law-mul-mul-ℚ
        ( rational-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u n))
        ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u))
        ( rational-ℚ⁺ (seq-geometric-sequence-ℚ⁺ v n))
        ( rational-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ v))))

  is-geometric-seq-mul-geometric-sequence-ℚ⁺ :
    is-geometric-sequence-ℚ⁺ seq-mul-geometric-sequence-ℚ⁺
  is-geometric-seq-mul-geometric-sequence-ℚ⁺ =
    mul-common-ratio-geometric-sequence-ℚ⁺ ,
    is-common-ratio-mul-geometric-sequence-ℚ⁺

  mul-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺
  mul-geometric-sequence-ℚ⁺ =
    seq-mul-geometric-sequence-ℚ⁺ ,
    is-geometric-seq-mul-geometric-sequence-ℚ⁺

  eq-common-ratio-mul-geometric-sequence-ℚ⁺ :
    ( mul-ℚ⁺
      ( common-ratio-geometric-sequence-ℚ⁺ u)
      ( common-ratio-geometric-sequence-ℚ⁺ v)) 
    ( common-ratio-geometric-sequence-ℚ⁺ mul-geometric-sequence-ℚ⁺)
  eq-common-ratio-mul-geometric-sequence-ℚ⁺ = refl

The pointwise inverse of a geometric sequence of positive rational numbers is geometric

Moreover, the common ratio of the inverse of a geometric sequence is the inverse of the common ratio of the sequence.

module _
  (u : geometric-sequence-ℚ⁺)
  where

  inv-common-ratio-geometric-sequence-ℚ⁺ : ℚ⁺
  inv-common-ratio-geometric-sequence-ℚ⁺ =
    inv-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)

  seq-inv-geometric-sequence-ℚ⁺ : sequence ℚ⁺
  seq-inv-geometric-sequence-ℚ⁺ =
    map-sequence inv-ℚ⁺ (seq-geometric-sequence-ℚ⁺ u)

  is-common-ratio-inv-geometric-sequence-ℚ⁺ :
    is-common-ratio-sequence-ℚ⁺
      seq-inv-geometric-sequence-ℚ⁺
      inv-common-ratio-geometric-sequence-ℚ⁺
  is-common-ratio-inv-geometric-sequence-ℚ⁺ n =
    ( ap
      ( inv-ℚ⁺)
      ( is-common-ratio-geometric-sequence-ℚ⁺ u n)) 
    ( distributive-inv-mul-ℚ⁺
      ( seq-geometric-sequence-ℚ⁺ u n)
      ( common-ratio-geometric-sequence-ℚ⁺ u))

  is-geometric-seq-inv-geometric-sequence-ℚ⁺ :
    is-geometric-sequence-ℚ⁺ seq-inv-geometric-sequence-ℚ⁺
  is-geometric-seq-inv-geometric-sequence-ℚ⁺ =
    inv-common-ratio-geometric-sequence-ℚ⁺ ,
    is-common-ratio-inv-geometric-sequence-ℚ⁺

  inv-geometric-sequence-ℚ⁺ : geometric-sequence-ℚ⁺
  inv-geometric-sequence-ℚ⁺ =
    seq-inv-geometric-sequence-ℚ⁺ ,
    is-geometric-seq-inv-geometric-sequence-ℚ⁺

  eq-common-ratio-inv-geometric-sequence-ℚ⁺ :
    ( inv-ℚ⁺ (common-ratio-geometric-sequence-ℚ⁺ u)) 
    ( common-ratio-geometric-sequence-ℚ⁺ inv-geometric-sequence-ℚ⁺)
  eq-common-ratio-inv-geometric-sequence-ℚ⁺ = refl

See also

Recent changes