Upper bounds in large posets
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-05-09.
Last modified on 2023-09-21.
module order-theory.upper-bounds-large-posets where
Imports
open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets
Idea
A binary upper bound of two elements a
and b
of a large poset P
is an
element x
of P
such that a ≤ x
and b ≤ x
both hold. Similarly, an
upper bound of a family a : I → P
of elements of P
is an element x
of
P
such that the inequality (a i) ≤ x
holds for every i : I
.
Definitions
The predicate of being an upper bound of a family of elements
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Poset P l2) where is-upper-bound-prop-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → Prop (β l2 l3 ⊔ l1) is-upper-bound-prop-family-of-elements-Large-Poset y = Π-Prop I (λ i → leq-prop-Large-Poset P (x i) y) is-upper-bound-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → UU (β l2 l3 ⊔ l1) is-upper-bound-family-of-elements-Large-Poset y = type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y) is-prop-is-upper-bound-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → is-prop (is-upper-bound-family-of-elements-Large-Poset y) is-prop-is-upper-bound-family-of-elements-Large-Poset y = is-prop-type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y)
Properties
An element x : Π-Large-Poset P
of a dependent product of large posets P i
indexed by i : I
is an upper bound of a family a : J → Π-Large-Poset P
if and only if x i
is an upper bound of the family (j ↦ a j i) : J → P i
of elements of P i
module _ {α : Level → Level} {β : Level → Level → Level} {l1 : Level} {I : UU l1} (P : I → Large-Poset α β) {l2 l3 : Level} {J : UU l2} (a : J → type-Π-Large-Poset P l3) {l4 : Level} (x : type-Π-Large-Poset P l4) where is-upper-bound-family-of-elements-Π-Large-Poset : ( (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) → is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x is-upper-bound-family-of-elements-Π-Large-Poset H j i = H i j map-inv-is-upper-bound-family-of-elements-Π-Large-Poset : is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x → (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i) map-inv-is-upper-bound-family-of-elements-Π-Large-Poset H i j = H j i logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset : ( (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) ↔ is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x pr1 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset = is-upper-bound-family-of-elements-Π-Large-Poset pr2 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset = map-inv-is-upper-bound-family-of-elements-Π-Large-Poset
Recent changes
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-09. Egbert Rijke. dependent products of large locales (#609).