The locale of propositions
Content created by Fredrik Bakke.
Created on 2025-01-07.
Last modified on 2025-01-07.
module foundation.locale-of-propositions where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.large-locale-of-propositions open import foundation.logical-equivalences open import foundation.unit-type open import foundation.universe-levels open import foundation-core.function-types open import order-theory.frames open import order-theory.greatest-lower-bounds-posets open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.meet-semilattices open import order-theory.meet-suplattices open import order-theory.posets open import order-theory.preorders open import order-theory.suplattices open import order-theory.top-elements-posets
Idea
The locale of propositions consists of all the propositions of any universe level and is ordered by the implications between them. Conjunction gives this poset the structure of a meet-semilattice, and existential quantification gives it the structure of a suplattice.
Definitions
The preorder of propositions
Prop-Preorder : (l : Level) → Preorder (lsuc l) l Prop-Preorder = preorder-Large-Preorder Prop-Large-Preorder
The poset of propositions
Prop-Poset : (l : Level) → Poset (lsuc l) l Prop-Poset = poset-Large-Poset Prop-Large-Poset
The largest element in the poset of propositions
has-top-element-Prop-Locale : {l : Level} → has-top-element-Poset (Prop-Poset l) has-top-element-Prop-Locale {l} = (raise-unit-Prop l , λ _ _ → raise-star)
Meets in the poset of propositions
is-meet-semilattice-Prop-Locale : {l : Level} → is-meet-semilattice-Poset (Prop-Poset l) is-meet-semilattice-Prop-Locale P Q = ( P ∧ Q , is-greatest-binary-lower-bound-conjunction-Prop P Q) Prop-Order-Theoretic-Meet-Semilattice : (l : Level) → Order-Theoretic-Meet-Semilattice (lsuc l) l Prop-Order-Theoretic-Meet-Semilattice l = Prop-Poset l , is-meet-semilattice-Prop-Locale Prop-Meet-Semilattice : (l : Level) → Meet-Semilattice (lsuc l) Prop-Meet-Semilattice l = meet-semilattice-Order-Theoretic-Meet-Semilattice ( Prop-Order-Theoretic-Meet-Semilattice l)
Suprema in the poset of propositions
is-suplattice-lzero-Prop-Locale : {l : Level} → is-suplattice-Poset lzero (Prop-Poset l) is-suplattice-lzero-Prop-Locale I P = (∃ I P , inv-iff ∘ up-exists) is-suplattice-Prop-Locale : {l : Level} → is-suplattice-Poset l (Prop-Poset l) is-suplattice-Prop-Locale I P = (∃ I P , inv-iff ∘ up-exists) Prop-Suplattice : (l : Level) → Suplattice (lsuc l) l l Prop-Suplattice l = Prop-Poset l , is-suplattice-Prop-Locale
is-meet-suplattice-Prop-Locale :
{l : Level} → is-meet-suplattice-Meet-Semilattice l (Prop-Meet-Semilattice l)
is-meet-suplattice-Prop-Locale I P = ?
Prop-Meet-Suplattice :
(l : Level) → Meet-Suplattice (lsuc l) l
Prop-Meet-Suplattice l =
Prop-Meet-Semilattice l , is-meet-suplattice-Prop-Locale
The frame of propositions
Prop-Frame : (l : Level) → Frame (lsuc l) l
Prop-Frame l = Prop-Meet-Suplattice l , ?
The locale of propositions
Prop-Locale : Locale lsuc (_⊔_) lzero
Prop-Locale = Prop-Frame
See also
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).