Terminal objects in a precategory
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-21.
Last modified on 2023-11-01.
module category-theory.terminal-objects-precategories where
Imports
open import category-theory.precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels
Idea
The terminal object of a precategory, if it exists, is an object with the universal property that there is a unique morphism into it from any object.
Definition
The universal property of a terminal object in a precategory
is-terminal-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → obj-Precategory C → UU (l1 ⊔ l2) is-terminal-obj-Precategory C x = (y : obj-Precategory C) → is-contr (hom-Precategory C y x) module _ {l1 l2 : Level} (C : Precategory l1 l2) (x : obj-Precategory C) (t : is-terminal-obj-Precategory C x) where hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → hom-Precategory C y x hom-is-terminal-obj-Precategory = center ∘ t is-unique-hom-is-terminal-obj-Precategory : (y : obj-Precategory C) → (f : hom-Precategory C y x) → hom-is-terminal-obj-Precategory y = f is-unique-hom-is-terminal-obj-Precategory = contraction ∘ t
Terminal objects in precategories
terminal-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2) terminal-obj-Precategory C = Σ (obj-Precategory C) (is-terminal-obj-Precategory C) module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : terminal-obj-Precategory C) where obj-terminal-obj-Precategory : obj-Precategory C obj-terminal-obj-Precategory = pr1 t is-terminal-obj-terminal-obj-Precategory : is-terminal-obj-Precategory C obj-terminal-obj-Precategory is-terminal-obj-terminal-obj-Precategory = pr2 t hom-terminal-obj-Precategory : (y : obj-Precategory C) → hom-Precategory C y obj-terminal-obj-Precategory hom-terminal-obj-Precategory = hom-is-terminal-obj-Precategory C ( obj-terminal-obj-Precategory) ( is-terminal-obj-terminal-obj-Precategory) is-unique-hom-terminal-obj-Precategory : (y : obj-Precategory C) → (f : hom-Precategory C y obj-terminal-obj-Precategory) → hom-terminal-obj-Precategory y = f is-unique-hom-terminal-obj-Precategory = is-unique-hom-is-terminal-obj-Precategory C ( obj-terminal-obj-Precategory) ( is-terminal-obj-terminal-obj-Precategory)
Recent changes
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).
- 2023-05-06. Egbert Rijke. Big cleanup throughout library (#594).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).