Representable functors between categories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-18.
Last modified on 2023-11-01.
module category-theory.representable-functors-categories where
Imports
open import category-theory.categories open import category-theory.functors-categories open import category-theory.natural-transformations-functors-categories open import category-theory.representable-functors-precategories open import foundation.category-of-sets open import foundation.universe-levels
Idea
Given a category C
and an object c
, there
is a functor from C
to the
category of sets represented by c
that:
- sends an object
x
ofC
to the sethom c x
and - sends a morphism
g : hom x y
ofC
to the functionhom c x → hom c y
defined by postcomposition withg
.
The functoriality axioms follow, by
function extensionality, from
associativity and the left unit law for the category C
.
Definition
representable-functor-Category : {l1 l2 : Level} (C : Category l1 l2) (c : obj-Category C) → functor-Category C (Set-Category l2) representable-functor-Category C = representable-functor-Precategory (precategory-Category C)
Natural transformations between representable functors
A morphism f : hom b c
in a category C
defines a
natural transformation
from the functor represented by c
to the functor represented by b
. Its
components hom c x → hom b x
are defined by precomposition with f
.
representable-natural-transformation-Category : {l1 l2 : Level} (C : Category l1 l2) {b c : obj-Category C} (f : hom-Category C b c) → natural-transformation-Category ( C) ( Set-Category l2) ( representable-functor-Category C c) ( representable-functor-Category C b) representable-natural-transformation-Category C = representable-natural-transformation-Precategory (precategory-Category C)
Recent changes
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-18. Fredrik Bakke. Yoneda's lemma for categories (#783).