Limits of Cauchy sequences in metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
module metric-spaces.limits-of-cauchy-sequences-metric-spaces where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.metric-spaces
Idea
An element l of a metric space is the
limit¶
of a Cauchy sequence u in
the metric space if there exists a
function m : ℚ⁺ → ℕ, called the limit modulus of the sequence, such that
whenever m ε ≤ n in ℕ, u n is in an
ε-neighborhood of l.
Definition
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (x : cauchy-sequence-Metric-Space M) where is-limit-modulus-prop-cauchy-sequence-Metric-Space : type-Metric-Space M → (ℚ⁺ → ℕ) → Prop l2 is-limit-modulus-prop-cauchy-sequence-Metric-Space = is-limit-modulus-prop-sequence-Metric-Space ( M) ( sequence-cauchy-sequence-Metric-Space M x) is-limit-modulus-cauchy-sequence-Metric-Space : type-Metric-Space M → (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-cauchy-sequence-Metric-Space lim μ = type-Prop (is-limit-modulus-prop-cauchy-sequence-Metric-Space lim μ) limit-modulus-sequence-cauchy-sequence-Metric-Space : type-Metric-Space M → UU l2 limit-modulus-sequence-cauchy-sequence-Metric-Space lim = type-subtype (is-limit-modulus-prop-cauchy-sequence-Metric-Space lim) is-limit-prop-cauchy-sequence-Metric-Space : type-Metric-Space M → Prop l2 is-limit-prop-cauchy-sequence-Metric-Space = is-limit-prop-sequence-Metric-Space ( M) ( sequence-cauchy-sequence-Metric-Space M x) is-limit-cauchy-sequence-Metric-Space : type-Metric-Space M → UU l2 is-limit-cauchy-sequence-Metric-Space lim = type-Prop (is-limit-prop-cauchy-sequence-Metric-Space lim) has-limit-prop-cauchy-sequence-Metric-Space : Prop (l1 ⊔ l2) has-limit-prop-cauchy-sequence-Metric-Space = has-limit-prop-sequence-Metric-Space ( M) ( sequence-cauchy-sequence-Metric-Space M x) has-limit-cauchy-sequence-Metric-Space : UU (l1 ⊔ l2) has-limit-cauchy-sequence-Metric-Space = type-Prop has-limit-prop-cauchy-sequence-Metric-Space
See also
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).