Limits of Cauchy sequences in metric spaces

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2026-01-07.
Last modified on 2026-01-07.

module metric-spaces.limits-of-cauchy-sequences-metric-spaces where
Imports
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.cauchy-sequences-metric-spaces
open import metric-spaces.limits-of-sequences-metric-spaces
open import metric-spaces.metric-spaces

Idea

An element l of a metric space is the limit of a Cauchy sequence u in the metric space if there exists a function m : ℚ⁺ → ℕ, called the limit modulus of the sequence, such that whenever m ε ≤ n in , u n is in an ε-neighborhood of l.

Definition

module _
  {l1 l2 : Level}
  (M : Metric-Space l1 l2)
  (x : cauchy-sequence-Metric-Space M)
  where

  is-limit-modulus-prop-cauchy-sequence-Metric-Space :
    type-Metric-Space M  (ℚ⁺  )  Prop l2
  is-limit-modulus-prop-cauchy-sequence-Metric-Space =
    is-limit-modulus-prop-sequence-Metric-Space
      ( M)
      ( sequence-cauchy-sequence-Metric-Space M x)

  is-limit-modulus-cauchy-sequence-Metric-Space :
    type-Metric-Space M  (ℚ⁺  )  UU l2
  is-limit-modulus-cauchy-sequence-Metric-Space lim μ =
    type-Prop (is-limit-modulus-prop-cauchy-sequence-Metric-Space lim μ)

  limit-modulus-sequence-cauchy-sequence-Metric-Space :
    type-Metric-Space M  UU l2
  limit-modulus-sequence-cauchy-sequence-Metric-Space lim =
    type-subtype (is-limit-modulus-prop-cauchy-sequence-Metric-Space lim)

  is-limit-prop-cauchy-sequence-Metric-Space :
    type-Metric-Space M  Prop l2
  is-limit-prop-cauchy-sequence-Metric-Space =
    is-limit-prop-sequence-Metric-Space
      ( M)
      ( sequence-cauchy-sequence-Metric-Space M x)

  is-limit-cauchy-sequence-Metric-Space : type-Metric-Space M  UU l2
  is-limit-cauchy-sequence-Metric-Space lim =
    type-Prop (is-limit-prop-cauchy-sequence-Metric-Space lim)

  has-limit-prop-cauchy-sequence-Metric-Space : Prop (l1  l2)
  has-limit-prop-cauchy-sequence-Metric-Space =
    has-limit-prop-sequence-Metric-Space
      ( M)
      ( sequence-cauchy-sequence-Metric-Space M x)

  has-limit-cauchy-sequence-Metric-Space : UU (l1  l2)
  has-limit-cauchy-sequence-Metric-Space =
    type-Prop has-limit-prop-cauchy-sequence-Metric-Space

See also

Recent changes