Finite sequences in commutative rings
Content created by Louis Wasserman.
Created on 2025-05-14.
Last modified on 2025-05-14.
module linear-algebra.finite-sequences-in-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.finite-sequences-in-rings
Idea
Finite sequences in a
commutative ring R
are
finite sequences in the underlying type of R
.
Definitions
module _ {l : Level} (R : Commutative-Ring l) where fin-sequence-type-Commutative-Ring : ℕ → UU l fin-sequence-type-Commutative-Ring = fin-sequence-type-Ring (ring-Commutative-Ring R) head-fin-sequence-type-Commutative-Ring : (n : ℕ) → fin-sequence-type-Commutative-Ring (succ-ℕ n) → type-Commutative-Ring R head-fin-sequence-type-Commutative-Ring = head-fin-sequence-type-Ring (ring-Commutative-Ring R) tail-fin-sequence-type-Commutative-Ring : (n : ℕ) → fin-sequence-type-Commutative-Ring (succ-ℕ n) → fin-sequence-type-Commutative-Ring n tail-fin-sequence-type-Commutative-Ring = tail-fin-sequence-type-Ring (ring-Commutative-Ring R) cons-fin-sequence-type-Commutative-Ring : (n : ℕ) → type-Commutative-Ring R → fin-sequence-type-Commutative-Ring n → fin-sequence-type-Commutative-Ring (succ-ℕ n) cons-fin-sequence-type-Commutative-Ring = cons-fin-sequence-type-Ring (ring-Commutative-Ring R) snoc-fin-sequence-type-Commutative-Ring : (n : ℕ) → fin-sequence-type-Commutative-Ring n → type-Commutative-Ring R → fin-sequence-type-Commutative-Ring (succ-ℕ n) snoc-fin-sequence-type-Commutative-Ring = snoc-fin-sequence-type-Ring (ring-Commutative-Ring R)
The zero finite sequence in a commutative ring
module _ {l : Level} (R : Commutative-Ring l) where zero-fin-sequence-type-Commutative-Ring : (n : ℕ) → fin-sequence-type-Commutative-Ring R n zero-fin-sequence-type-Commutative-Ring n i = zero-Commutative-Ring R
Pointwise addition of finite sequences in a commutative ring
module _ {l : Level} (R : Commutative-Ring l) where add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v w : fin-sequence-type-Commutative-Ring R n) → fin-sequence-type-Commutative-Ring R n add-fin-sequence-type-Commutative-Ring = add-fin-sequence-type-Ring (ring-Commutative-Ring R)
Pointwise negation of finite sequences in a commutative ring
module _ {l : Level} (R : Commutative-Ring l) where neg-fin-sequence-type-Commutative-Ring : (n : ℕ) → fin-sequence-type-Commutative-Ring R n → fin-sequence-type-Commutative-Ring R n neg-fin-sequence-type-Commutative-Ring = neg-fin-sequence-type-Ring (ring-Commutative-Ring R)
Properties of pointwise addition
Associativity of pointwise addition
module _ {l : Level} (R : Commutative-Ring l) where associative-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v1 v2 v3 : fin-sequence-type-Commutative-Ring R n) → ( add-fin-sequence-type-Commutative-Ring R n ( add-fin-sequence-type-Commutative-Ring R n v1 v2) v3) = ( add-fin-sequence-type-Commutative-Ring R n v1 ( add-fin-sequence-type-Commutative-Ring R n v2 v3)) associative-add-fin-sequence-type-Commutative-Ring = associative-add-fin-sequence-type-Ring (ring-Commutative-Ring R)
Unit laws of pointwise addition
module _ {l : Level} (R : Commutative-Ring l) where left-unit-law-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v : fin-sequence-type-Commutative-Ring R n) → add-fin-sequence-type-Commutative-Ring R n ( zero-fin-sequence-type-Commutative-Ring R n) v = v left-unit-law-add-fin-sequence-type-Commutative-Ring = left-unit-law-add-fin-sequence-type-Ring (ring-Commutative-Ring R) right-unit-law-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v : fin-sequence-type-Commutative-Ring R n) → add-fin-sequence-type-Commutative-Ring R n v ( zero-fin-sequence-type-Commutative-Ring R n) = v right-unit-law-add-fin-sequence-type-Commutative-Ring = right-unit-law-add-fin-sequence-type-Ring (ring-Commutative-Ring R)
Commutativity of pointwise addition
module _ {l : Level} (R : Commutative-Ring l) where commutative-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v w : fin-sequence-type-Commutative-Ring R n) → add-fin-sequence-type-Commutative-Ring R n v w = add-fin-sequence-type-Commutative-Ring R n w v commutative-add-fin-sequence-type-Commutative-Ring = commutative-add-fin-sequence-type-Ring (ring-Commutative-Ring R)
Inverse laws of pointwise addition
module _ {l : Level} (R : Commutative-Ring l) where left-inverse-law-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v : fin-sequence-type-Commutative-Ring R n) → add-fin-sequence-type-Commutative-Ring ( R) ( n) ( neg-fin-sequence-type-Commutative-Ring R n v) ( v) = zero-fin-sequence-type-Commutative-Ring R n left-inverse-law-add-fin-sequence-type-Commutative-Ring = left-inverse-law-add-fin-sequence-type-Ring (ring-Commutative-Ring R) right-inverse-law-add-fin-sequence-type-Commutative-Ring : (n : ℕ) (v : fin-sequence-type-Commutative-Ring R n) → add-fin-sequence-type-Commutative-Ring ( R) ( n) ( v) ( neg-fin-sequence-type-Commutative-Ring R n v) = zero-fin-sequence-type-Commutative-Ring R n right-inverse-law-add-fin-sequence-type-Commutative-Ring = right-inverse-law-add-fin-sequence-type-Ring (ring-Commutative-Ring R)
The abelian group of pointwise addition
module _ {l : Level} (R : Commutative-Ring l) where semigroup-fin-sequence-type-Commutative-Ring : ℕ → Semigroup l semigroup-fin-sequence-type-Commutative-Ring = semigroup-fin-sequence-type-Ring (ring-Commutative-Ring R) monoid-fin-sequence-type-Commutative-Ring : ℕ → Monoid l monoid-fin-sequence-type-Commutative-Ring = monoid-fin-sequence-type-Ring (ring-Commutative-Ring R) commutative-monoid-fin-sequence-type-Commutative-Ring : ℕ → Commutative-Monoid l commutative-monoid-fin-sequence-type-Commutative-Ring = commutative-monoid-fin-sequence-type-Ring (ring-Commutative-Ring R) group-fin-sequence-type-Commutative-Ring : ℕ → Group l group-fin-sequence-type-Commutative-Ring = group-fin-sequence-type-Ring (ring-Commutative-Ring R) ab-fin-sequence-type-Commutative-Ring : ℕ → Ab l ab-fin-sequence-type-Commutative-Ring = ab-fin-sequence-type-Ring (ring-Commutative-Ring R)
Recent changes
- 2025-05-14. Louis Wasserman. Refactor linear algebra to use “tuples” for what was “vectors” (#1397).