Localizations at subuniverses
Content created by Fredrik Bakke.
Created on 2024-11-19.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.localizations-at-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.subuniverses open import foundation.universe-levels open import orthogonal-factorization-systems.types-local-at-maps
Idea
Let P
be a subuniverse. Given a type X
, its
localization at P
, or P
-localization, is a type Y
in P
and a map
η : X → Y
such that every type in P
is
η
-local. I.e., for
every Z
in P
, the precomposition map
- ∘ η : (Y → Z) → (X → Z)
is an equivalence.
Definition
The predicate of being a localization at a subuniverse
is-subuniverse-localization : {l1 l2 lP : Level} (P : subuniverse l1 lP) → UU l2 → UU l1 → UU (lsuc l1 ⊔ l2 ⊔ lP) is-subuniverse-localization {l1} {l2} P X Y = ( is-in-subuniverse P Y) × ( Σ ( X → Y) ( λ η → (Z : UU l1) → is-in-subuniverse P Z → is-local η Z))
module _ {l1 l2 lP : Level} (P : subuniverse l1 lP) {X : UU l2} {Y : UU l1} (is-localization-Y : is-subuniverse-localization P X Y) where is-in-subuniverse-is-subuniverse-localization : is-in-subuniverse P Y is-in-subuniverse-is-subuniverse-localization = pr1 is-localization-Y unit-is-subuniverse-localization : X → Y unit-is-subuniverse-localization = pr1 (pr2 is-localization-Y) is-local-at-unit-is-in-subuniverse-is-subuniverse-localization : (Z : UU l1) → is-in-subuniverse P Z → is-local unit-is-subuniverse-localization Z is-local-at-unit-is-in-subuniverse-is-subuniverse-localization = pr2 (pr2 is-localization-Y)
The type of localizations at a subuniverse
subuniverse-localization : {l1 l2 lP : Level} (P : subuniverse l1 lP) → UU l2 → UU (lsuc l1 ⊔ l2 ⊔ lP) subuniverse-localization {l1} P X = Σ (UU l1) (is-subuniverse-localization P X)
module _ {l1 l2 lP : Level} (P : subuniverse l1 lP) {X : UU l2} (L : subuniverse-localization P X) where type-subuniverse-localization : UU l1 type-subuniverse-localization = pr1 L is-subuniverse-localization-subuniverse-localization : is-subuniverse-localization P X type-subuniverse-localization is-subuniverse-localization-subuniverse-localization = pr2 L is-in-subuniverse-subuniverse-localization : is-in-subuniverse P type-subuniverse-localization is-in-subuniverse-subuniverse-localization = is-in-subuniverse-is-subuniverse-localization P ( is-subuniverse-localization-subuniverse-localization) unit-subuniverse-localization : X → type-subuniverse-localization unit-subuniverse-localization = unit-is-subuniverse-localization P ( is-subuniverse-localization-subuniverse-localization) is-local-at-unit-is-in-subuniverse-subuniverse-localization : (Z : UU l1) → is-in-subuniverse P Z → is-local unit-subuniverse-localization Z is-local-at-unit-is-in-subuniverse-subuniverse-localization = is-local-at-unit-is-in-subuniverse-is-subuniverse-localization P ( is-subuniverse-localization-subuniverse-localization)
Properties
There is at most one P
-localization
This is Proposition 5.1.2 in Classifying Types, and remains to be formalized.
See also
References
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
- [RSS20]
- Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 01 2020. URL: https://lmcs.episciences.org/6015, arXiv:1706.07526, doi:10.23638/LMCS-16(1:2)2020.
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).