Raising universe levels of upper Dedekind real numbers

Content created by Louis Wasserman.

Created on 2026-02-15.
Last modified on 2026-02-15.

{-# OPTIONS --lossy-unification #-}

module real-numbers.raising-universe-levels-upper-dedekind-real-numbers where
Imports
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.functoriality-cartesian-product-types
open import foundation.inhabited-subtypes
open import foundation.logical-equivalences
open import foundation.raising-universe-levels
open import foundation.subtypes
open import foundation.universe-levels

open import logic.functoriality-existential-quantification

open import real-numbers.upper-dedekind-real-numbers

Idea

For every universe 𝒰 there is a type of upper Dedekind real numbers upper-ℝ relative to 𝒰, upper-ℝ 𝒰. Given a larger universe 𝒱, then we may raise a upper Dedekind real number x from the universe 𝒰 to a upper Dedekind real number in the universe 𝒱.

Definition

module _
  {l0 : Level} (l : Level) (x : upper-ℝ l0)
  where

  cut-raise-upper-ℝ : subtype (l0  l) 
  cut-raise-upper-ℝ = raise-subtype l (cut-upper-ℝ x)

  abstract
    is-inhabited-cut-raise-upper-ℝ : is-inhabited-subtype cut-raise-upper-ℝ
    is-inhabited-cut-raise-upper-ℝ =
      map-tot-exists  _  map-raise) (is-inhabited-cut-upper-ℝ x)

    is-rounded-cut-raise-upper-ℝ :
      (q : ) 
      is-in-subtype cut-raise-upper-ℝ q 
      exists   p  le-ℚ-Prop p q  cut-raise-upper-ℝ p)
    is-rounded-cut-raise-upper-ℝ q =
      ( iff-tot-exists
        ( λ p 
          iff-equiv
            ( equiv-product-right
              ( compute-raise l (is-in-cut-upper-ℝ x p))))) ∘iff
      ( is-rounded-cut-upper-ℝ x q) ∘iff
      ( iff-equiv (inv-compute-raise l (is-in-cut-upper-ℝ x q)))

  raise-upper-ℝ : upper-ℝ (l0  l)
  raise-upper-ℝ =
    cut-raise-upper-ℝ ,
    is-inhabited-cut-raise-upper-ℝ ,
    is-rounded-cut-raise-upper-ℝ

Recent changes