Raising universe levels of upper Dedekind real numbers
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.raising-universe-levels-upper-dedekind-real-numbers where
Imports
open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.functoriality-cartesian-product-types open import foundation.inhabited-subtypes open import foundation.logical-equivalences open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.universe-levels open import logic.functoriality-existential-quantification open import real-numbers.upper-dedekind-real-numbers
Idea
For every universe 𝒰 there is a type of
upper Dedekind real numbers
upper-ℝ relative to 𝒰, upper-ℝ 𝒰. Given a larger universe 𝒱, then we may
raise¶
a upper Dedekind real number x from the universe 𝒰 to a upper Dedekind real
number in the universe 𝒱.
Definition
module _ {l0 : Level} (l : Level) (x : upper-ℝ l0) where cut-raise-upper-ℝ : subtype (l0 ⊔ l) ℚ cut-raise-upper-ℝ = raise-subtype l (cut-upper-ℝ x) abstract is-inhabited-cut-raise-upper-ℝ : is-inhabited-subtype cut-raise-upper-ℝ is-inhabited-cut-raise-upper-ℝ = map-tot-exists (λ _ → map-raise) (is-inhabited-cut-upper-ℝ x) is-rounded-cut-raise-upper-ℝ : (q : ℚ) → is-in-subtype cut-raise-upper-ℝ q ↔ exists ℚ (λ p → le-ℚ-Prop p q ∧ cut-raise-upper-ℝ p) is-rounded-cut-raise-upper-ℝ q = ( iff-tot-exists ( λ p → iff-equiv ( equiv-product-right ( compute-raise l (is-in-cut-upper-ℝ x p))))) ∘iff ( is-rounded-cut-upper-ℝ x q) ∘iff ( iff-equiv (inv-compute-raise l (is-in-cut-upper-ℝ x q))) raise-upper-ℝ : upper-ℝ (l0 ⊔ l) raise-upper-ℝ = cut-raise-upper-ℝ , is-inhabited-cut-raise-upper-ℝ , is-rounded-cut-raise-upper-ℝ
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).