Sections of functor between synthetic categories
Content created by Ivan Kobe.
Created on 2024-09-25.
Last modified on 2024-09-25.
{-# OPTIONS --guardedness #-} module synthetic-category-theory.sections-synthetic-categories where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.globular-types open import synthetic-category-theory.synthetic-categories
Idea
A section of a functor f: A → B is a functor g: B → A equipped with a natural isomorphism f∘g ≅ id.
The predicate of being a section of a functor f: A → B
module _ {l : Level} where is-section-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (f : functor-Synthetic-Category-Theory κ C D) → functor-Synthetic-Category-Theory κ D C → UU l is-section-Synthetic-Category-Theory κ μ ι f s = isomorphism-Synthetic-Category-Theory κ ( comp-functor-Synthetic-Category-Theory μ f s) ( id-functor-Synthetic-Category-Theory ι _)
The type of sections of a funcor f: A → B
module _ {l : Level} where section-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (f : functor-Synthetic-Category-Theory κ C D) → UU l section-Synthetic-Category-Theory κ μ ι f = Σ ( functor-Synthetic-Category-Theory κ _ _) ( is-section-Synthetic-Category-Theory κ μ ι f)
The components of a section
functor-section-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} {f : functor-Synthetic-Category-Theory κ C D} → section-Synthetic-Category-Theory κ μ ι f → functor-Synthetic-Category-Theory κ D C functor-section-Synthetic-Category-Theory κ μ ι = pr1 is-section-functor-section-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} {f : functor-Synthetic-Category-Theory κ C D} (s : section-Synthetic-Category-Theory κ μ ι f) → is-section-Synthetic-Category-Theory κ μ ι f ( functor-section-Synthetic-Category-Theory κ μ ι s) is-section-functor-section-Synthetic-Category-Theory κ μ ι = pr2
Recent changes
- 2024-09-25. Ivan Kobe. Pullbacks of synthetic categories (#1183).