Cyclic groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-07-20.
Last modified on 2024-04-11.
module group-theory.cyclic-groups where
Imports
open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.generating-elements-groups open import group-theory.groups
Idea
A group G
is said to be cyclic if it is
generated by a single element,
i.e., if there exists an element
g : G
such that the group homomorphism
g̃ : ℤ → G
equipped with an identification g̃(1) = g
is
surjective
Definitions
Cyclic groups
The standard definition of cyclic groups
module _ {l1 : Level} (G : Group l1) where is-cyclic-prop-Group : Prop l1 is-cyclic-prop-Group = ∃ (type-Group G) (is-generating-element-prop-Group G) is-cyclic-Group : UU l1 is-cyclic-Group = type-Prop is-cyclic-prop-Group is-prop-is-cyclic-Group : is-prop is-cyclic-Group is-prop-is-cyclic-Group = is-prop-type-Prop is-cyclic-prop-Group Cyclic-Group : (l : Level) → UU (lsuc l) Cyclic-Group l = type-subtype (is-cyclic-prop-Group {l}) module _ {l : Level} (C : Cyclic-Group l) where group-Cyclic-Group : Group l group-Cyclic-Group = pr1 C is-cyclic-Cyclic-Group : is-cyclic-Group group-Cyclic-Group is-cyclic-Cyclic-Group = pr2 C set-Cyclic-Group : Set l set-Cyclic-Group = set-Group group-Cyclic-Group type-Cyclic-Group : UU l type-Cyclic-Group = type-Group group-Cyclic-Group zero-Cyclic-Group : type-Cyclic-Group zero-Cyclic-Group = unit-Group group-Cyclic-Group add-Cyclic-Group : (x y : type-Cyclic-Group) → type-Cyclic-Group add-Cyclic-Group = mul-Group group-Cyclic-Group neg-Cyclic-Group : type-Cyclic-Group → type-Cyclic-Group neg-Cyclic-Group = inv-Group group-Cyclic-Group associative-add-Cyclic-Group : (x y z : type-Cyclic-Group) → add-Cyclic-Group (add-Cyclic-Group x y) z = add-Cyclic-Group x (add-Cyclic-Group y z) associative-add-Cyclic-Group = associative-mul-Group group-Cyclic-Group commutative-add-Cyclic-Group : (x y : type-Cyclic-Group) → add-Cyclic-Group x y = add-Cyclic-Group y x commutative-add-Cyclic-Group x y = apply-universal-property-trunc-Prop ( is-cyclic-Cyclic-Group) ( Id-Prop set-Cyclic-Group (add-Cyclic-Group x y) (add-Cyclic-Group y x)) ( λ (g , u) → commutative-mul-is-generating-element-Group group-Cyclic-Group g u x y) ab-Cyclic-Group : Ab l pr1 ab-Cyclic-Group = group-Cyclic-Group pr2 ab-Cyclic-Group = commutative-add-Cyclic-Group
The definition where G
has a generating element
module _ {l1 : Level} (G : Group l1) where has-generating-element-prop-Group : Prop l1 has-generating-element-prop-Group = is-inhabited-subtype-Prop (generating-element-Group G) has-generating-element-Group : UU l1 has-generating-element-Group = type-Prop has-generating-element-prop-Group
Properties
A group is cyclic if and only if it has a generating element
module _ {l1 : Level} (G : Group l1) where is-cyclic-has-generating-element-Group : is-cyclic-Group G → {l : Level} → exists-structure ( type-Group G) ( λ g → is-emb-ev-element-hom-Group' G g l) is-cyclic-has-generating-element-Group H {l} = apply-universal-property-trunc-Prop H ( exists-structure-Prop ( type-Group G) ( λ g → is-emb-ev-element-hom-Group' G g l)) ( λ (g , u) → intro-exists g (is-emb-ev-element-is-generating-element-Group G g u))
See also
- In
group-theory.generating-elements-groups
we show that groups equipped with a generating element are isomorphic to their endomorphism rings. Furthermore, the multiplicative structure of these rings is commutative, so that groups equipped with a generating element are also equipped with the structure of a commutative ring.
Table of files related to cyclic types, groups, and rings
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).