The groupoid of main classes of Latin hypercubes
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2022-05-01.
Last modified on 2025-01-06.
module univalent-combinatorics.main-classes-of-latin-hypercubes where
Imports
open import elementary-number-theory.natural-numbers open import foundation.1-types open import foundation.contractible-types open import foundation.decidable-propositions open import foundation.dependent-pair-types open import foundation.inhabited-types open import foundation.mere-equivalences open import foundation.products-unordered-tuples-of-types open import foundation.set-truncations open import foundation.universe-levels open import foundation.unordered-tuples open import univalent-combinatorics.complements-isolated-elements open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.dependent-function-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.pi-finite-types open import univalent-combinatorics.standard-finite-types open import univalent-combinatorics.untruncated-pi-finite-types
Definitions
The type of main classes of Latin hypercubes
Main-Class-Latin-Hypercube : (l1 l2 : Level) (n : ℕ) → UU (lsuc l1 ⊔ lsuc l2) Main-Class-Latin-Hypercube l1 l2 n = Σ ( unordered-tuple (succ-ℕ n) (Inhabited-Type l1)) ( λ A → Σ ( product-unordered-tuple-types (succ-ℕ n) ( map-unordered-tuple (succ-ℕ n) type-Inhabited-Type A) → UU l2) ( λ R → ( i : type-unordered-tuple (succ-ℕ n) A) ( f : product-unordered-tuple-types n ( unordered-tuple-complement-point-type-unordered-tuple n ( map-unordered-tuple (succ-ℕ n) type-Inhabited-Type A) ( i))) → is-contr ( Σ ( type-Inhabited-Type (element-unordered-tuple (succ-ℕ n) A i)) ( λ a → R ( map-equiv-pr-product-unordered-tuple-types n ( map-unordered-tuple (succ-ℕ n) type-Inhabited-Type A) ( i) ( f) ( a))))))
The type of main classes of Latin hypercubes of fixed finite order
Main-Class-Latin-Hypercube-of-Order : (n m : ℕ) → UU (lsuc lzero) Main-Class-Latin-Hypercube-of-Order n m = Σ ( unordered-tuple (succ-ℕ n) (UU-Fin lzero m)) ( λ A → Σ ( product-unordered-tuple-types (succ-ℕ n) ( map-unordered-tuple (succ-ℕ n) (type-UU-Fin m) A) → Decidable-Prop lzero) ( λ R → (i : type-unordered-tuple (succ-ℕ n) A) (f : product-unordered-tuple-types n ( unordered-tuple-complement-point-type-unordered-tuple n ( map-unordered-tuple (succ-ℕ n) (type-UU-Fin m) A) ( i))) → is-contr ( Σ ( type-UU-Fin m (element-unordered-tuple (succ-ℕ n) A i)) ( λ a → type-Decidable-Prop ( R ( map-equiv-pr-product-unordered-tuple-types n ( map-unordered-tuple (succ-ℕ n) (type-UU-Fin m) A) ( i) ( f) ( a)))))))
Properties
The type of main classes of Latin hypercubes of fixed finite order is a groupoid
is-1-type-Main-Class-Latin-Hypercube-of-Order : (n m : ℕ) → is-1-type (Main-Class-Latin-Hypercube-of-Order n m) is-1-type-Main-Class-Latin-Hypercube-of-Order n m = is-1-type-Σ ( is-1-type-unordered-tuple (succ-ℕ n) (is-1-type-UU-Fin m)) ( λ A → is-1-type-Σ ( is-1-type-function-type (is-1-type-is-set is-set-Decidable-Prop)) ( λ R → is-1-type-Π ( λ i → is-1-type-Π (λ f → is-1-type-is-prop is-property-is-contr))))
The groupoid of main classes of Latin hypercubes of finite order is unbounded π-finite
is-untruncated-π-finite-Main-Class-Latin-Hypercube-of-Order : (k n m : ℕ) → is-untruncated-π-finite k (Main-Class-Latin-Hypercube-of-Order n m) is-untruncated-π-finite-Main-Class-Latin-Hypercube-of-Order k n m = is-untruncated-π-finite-Σ k ( is-untruncated-π-finite-Σ ( succ-ℕ k) ( is-untruncated-π-finite-UU-Fin (succ-ℕ (succ-ℕ k)) (succ-ℕ n)) ( λ X → is-untruncated-π-finite-Π ( succ-ℕ k) ( is-finite-type-UU-Fin (succ-ℕ n) X) ( λ i → is-untruncated-π-finite-UU-Fin (succ-ℕ k) m))) ( λ A → is-untruncated-π-finite-Σ k ( is-untruncated-π-finite-is-finite ( succ-ℕ k) ( is-finite-Π ( is-finite-Π ( is-finite-type-UU-Fin ( succ-ℕ n) ( type-unordered-tuple-UU-Fin (succ-ℕ n) A)) ( λ i → is-finite-type-UU-Fin m ( element-unordered-tuple (succ-ℕ n) A i))) ( λ f → is-finite-Decidable-Prop))) ( λ R → is-untruncated-π-finite-is-finite k ( is-finite-Π ( is-finite-type-UU-Fin ( succ-ℕ n) ( type-unordered-tuple-UU-Fin (succ-ℕ n) A)) ( λ i → is-finite-Π ( is-finite-Π ( is-finite-has-cardinality n ( has-cardinality-type-complement-element-UU-Fin n ( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) A) i))) ( λ j → is-finite-type-UU-Fin m ( element-unordered-tuple (succ-ℕ n) A (pr1 j)))) ( λ f → is-finite-is-decidable-Prop ( is-contr-Prop _) ( is-decidable-is-contr-is-finite ( is-finite-type-decidable-subtype ( λ x → R ( map-equiv-pr-product-unordered-tuple-types n ( map-unordered-tuple ( succ-ℕ n) ( type-UU-Fin m) ( A)) ( i) ( f) ( x))) ( is-finite-type-UU-Fin m ( element-unordered-tuple (succ-ℕ n) A i)))))))))
The groupoid of main classes of Latin hypercubes of finite order is π₁-finite
is-π-finite-Main-Class-Latin-Hypercube-of-Order : (n m : ℕ) → is-π-finite 1 (Main-Class-Latin-Hypercube-of-Order n m) is-π-finite-Main-Class-Latin-Hypercube-of-Order n m = is-π-finite-is-untruncated-π-finite 1 ( is-1-type-Main-Class-Latin-Hypercube-of-Order n m) ( is-untruncated-π-finite-Main-Class-Latin-Hypercube-of-Order 1 n m)
The sequence of main classes of Latin hypercubes of fixed finite order
number-of-main-classes-of-Latin-hypercubes-of-order : ℕ → ℕ → ℕ number-of-main-classes-of-Latin-hypercubes-of-order n m = number-of-elements-is-finite ( is-untruncated-π-finite-Main-Class-Latin-Hypercube-of-Order 0 n m) mere-equiv-number-of-main-classes-of-Latin-hypercubes-of-order : (n m : ℕ) → mere-equiv ( Fin (number-of-main-classes-of-Latin-hypercubes-of-order n m)) ( type-trunc-Set ( Main-Class-Latin-Hypercube-of-Order n m)) mere-equiv-number-of-main-classes-of-Latin-hypercubes-of-order n m = mere-equiv-is-finite ( is-untruncated-π-finite-Main-Class-Latin-Hypercube-of-Order 0 n m)
Recent changes
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-05-22. Fredrik Bakke, Victor Blanchi, Egbert Rijke and Jonathan Prieto-Cubides. Pre-commit stuff (#627).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).