Mather’s second cube theorem
Content created by Fredrik Bakke.
Created on 2025-08-14.
Last modified on 2025-08-14.
module synthetic-homotopy-theory.mathers-second-cube-theorem where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-cubes-of-maps open import foundation.commuting-squares-of-maps open import foundation.commuting-triangles-of-maps open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-fibers-of-maps open import foundation.homotopies open import foundation.identity-types open import foundation.morphisms-arrows open import foundation.pullbacks open import foundation.span-diagrams open import foundation.transport-along-identifications open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-pullbacks open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.dependent-cocones-under-spans open import synthetic-homotopy-theory.dependent-universal-property-pushouts open import synthetic-homotopy-theory.descent-data-pushouts open import synthetic-homotopy-theory.equivalences-descent-data-pushouts open import synthetic-homotopy-theory.flattening-lemma-pushouts open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts
Idea
Mather’s second cube theorem¶ states that every base change of a pushout square is a pushout. In other words, if we are given a commuting cube where the bottom face is a pushout and the vertical faces are pullbacks
∙ ----------------> ∙
|⌟\ ⌟ |⌟\
| \ | \
| ∨ | ∨
| ∙ ----------------> ∙
| | ⌟ | |
∨ | ∨ |
∙ ----|-----------> ∙ |
\ | \ |
\ | \ |
∨ ∨ ⌜ ∨ ∨
∙ ----------------> ∙,
then the top face is also a pushout.
Theorem
module _
{l1 l2 l3 l4 l1' l2' l3' l4' : Level}
{A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4}
(f : A → B) (g : A → C) (h : B → D) (k : C → D)
{A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'}
(f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D')
(hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D)
(top : h' ∘ f' ~ k' ∘ g')
(left : f ∘ hA ~ hB ∘ f')
(back : g ∘ hA ~ hC ∘ g')
(front : h ∘ hB ~ hD ∘ h')
(right : k ∘ hC ~ hD ∘ k')
(bottom : h ∘ f ~ k ∘ g)
(c :
coherence-cube-maps
f g h k f' g' h' k' hA hB hC hD
top left back front right bottom)
where
mathers-second-cube-theorem :
universal-property-pushout f g (h , k , bottom) →
universal-property-pullback h hD (hB , h' , front) →
universal-property-pullback k hD (hC , k' , right) →
universal-property-pullback f hB (hA , f' , left) →
universal-property-pullback g hC (hA , g' , back) →
universal-property-pushout f' g' (h' , k' , top)
mathers-second-cube-theorem po-bottom pb-front pb-right pb-left pb-back =
universal-property-pushout-top-universal-property-pushout-bottom-cube-equiv
_ _ _ _
f' g' h' k'
( equiv-tot e-left ∘e inv-equiv-total-fiber' hA)
( inv-equiv-total-fiber' hB)
( inv-equiv-total-fiber' hC)
( inv-equiv-total-fiber' hD)
( top)
( λ x →
eq-pair-Σ (left x) (inv-compute-tr-self-fiber' hB (f' x , left x)))
( λ x →
eq-pair-Σ (back x) {! !})
( λ x →
eq-pair-Σ (front x) (inv-compute-tr-self-fiber' hD (h' x , front x)))
( λ x →
eq-pair-Σ (right x) (inv-compute-tr-self-fiber' hD (k' x , right x)))
( {! !})
( {! !})
( flattening-lemma-descent-data-pushout
( f)
( g)
( h , k , bottom)
( ( fiber' hB) ,
( fiber' hC) ,
( λ s →
( inv-equiv (e-right (g s))) ∘e
( equiv-tr (fiber' hD) (bottom s)) ∘e
( e-front (f s))))
( fiber' hD)
( ( e-front) ,
( e-right) ,
{! !})
( po-bottom))
where
e-left =
fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
f hB (hA , f' , left) pb-left
e-front =
fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
h hD (hB , h' , front) pb-front
e-right =
fiberwise-equiv-map-fiber-vertical-map-cone-universal-property-pullback'
k hD (hC , k' , right) pb-right
See also
- Mather’s second cube theorem is the unstraightened version of the flattening lemma for pushouts
- The descent property for pushouts.
External links
- Mather’s Second Cube Theorem on Kerodon