Nonnegative integer fractions
Content created by Louis Wasserman.
Created on 2025-04-01.
Last modified on 2025-04-01.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.nonnegative-integer-fractions where
Imports
open import elementary-number-theory.addition-integer-fractions open import elementary-number-theory.addition-positive-and-negative-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.positive-and-negative-integers open import elementary-number-theory.positive-integer-fractions open import elementary-number-theory.positive-integers open import elementary-number-theory.reduced-integer-fractions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels
Idea
An integer fraction x
is said
to be
nonnegative¶
if its numerator is a
nonnegative integer.
Definitions
The property of being a nonnegative integer fraction
module _ (x : fraction-ℤ) where is-nonnegative-fraction-ℤ : UU lzero is-nonnegative-fraction-ℤ = is-nonnegative-ℤ (numerator-fraction-ℤ x) is-prop-is-nonnegative-fraction-ℤ : is-prop is-nonnegative-fraction-ℤ is-prop-is-nonnegative-fraction-ℤ = is-prop-is-nonnegative-ℤ (numerator-fraction-ℤ x)
Properties
An integer fraction similar to a nonnegative integer fraction is nonnegative
is-nonnegative-sim-fraction-ℤ : (x y : fraction-ℤ) (S : sim-fraction-ℤ x y) → is-nonnegative-fraction-ℤ x → is-nonnegative-fraction-ℤ y is-nonnegative-sim-fraction-ℤ x y S N = is-nonnegative-left-factor-mul-ℤ ( tr ( is-nonnegative-ℤ) ( S) ( is-nonnegative-mul-nonnegative-positive-ℤ ( N) ( is-positive-denominator-fraction-ℤ y))) ( is-positive-denominator-fraction-ℤ x)
The reduced fraction of a nonnegative integer fraction is nonnegative
is-nonnegative-reduce-fraction-ℤ : {x : fraction-ℤ} (P : is-nonnegative-fraction-ℤ x) → is-nonnegative-fraction-ℤ (reduce-fraction-ℤ x) is-nonnegative-reduce-fraction-ℤ {x} = is-nonnegative-sim-fraction-ℤ ( x) ( reduce-fraction-ℤ x) ( sim-reduced-fraction-ℤ x)
The sum of two nonnegative integer fractions is nonnegative
is-nonnegative-add-fraction-ℤ : {x y : fraction-ℤ} → is-nonnegative-fraction-ℤ x → is-nonnegative-fraction-ℤ y → is-nonnegative-fraction-ℤ (add-fraction-ℤ x y) is-nonnegative-add-fraction-ℤ {x} {y} P Q = is-nonnegative-add-ℤ ( is-nonnegative-mul-nonnegative-positive-ℤ ( P) ( is-positive-denominator-fraction-ℤ y)) ( is-nonnegative-mul-nonnegative-positive-ℤ ( Q) ( is-positive-denominator-fraction-ℤ x))
The product of two nonnegative integer fractions is nonnegative
is-nonnegative-mul-nonnegative-fraction-ℤ : {x y : fraction-ℤ} → is-nonnegative-fraction-ℤ x → is-nonnegative-fraction-ℤ y → is-nonnegative-fraction-ℤ (mul-fraction-ℤ x y) is-nonnegative-mul-nonnegative-fraction-ℤ = is-nonnegative-mul-ℤ
Recent changes
- 2025-04-01. Louis Wasserman. Absolute value on rational numbers (#1381).