The strong induction principle for the natural numbers
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2022-01-31.
Last modified on 2024-08-26.
module elementary-number-theory.strong-induction-natural-numbers where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels
Idea
The strong induction principle allows one to assume in the inductive step that the inductive hypothesis is satisfied at all smaller values.
Definition
The □
-modality on families indexed by ℕ
□-≤-ℕ : {l : Level} → (ℕ → UU l) → ℕ → UU l □-≤-ℕ P n = (m : ℕ) → (m ≤-ℕ n) → P m η-□-≤-ℕ : {l : Level} {P : ℕ → UU l} → ((n : ℕ) → P n) → (n : ℕ) → □-≤-ℕ P n η-□-≤-ℕ f n m p = f m ε-□-≤-ℕ : {l : Level} {P : ℕ → UU l} → ((n : ℕ) → □-≤-ℕ P n) → ((n : ℕ) → P n) ε-□-≤-ℕ f n = f n n (refl-leq-ℕ n)
Theorem
The base case of the strong induction principle
zero-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) → P zero-ℕ → □-≤-ℕ P zero-ℕ zero-strong-ind-ℕ P p0 zero-ℕ t = p0 eq-zero-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) (t : leq-ℕ zero-ℕ zero-ℕ) → zero-strong-ind-ℕ P p0 zero-ℕ t = p0 eq-zero-strong-ind-ℕ P p0 t = refl
The successor case of the strong induction principle
cases-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (pS : (n : ℕ) → (□-≤-ℕ P n) → P (succ-ℕ n)) (n : ℕ) (H : □-≤-ℕ P n) (m : ℕ) (c : (leq-ℕ m n) + (m = succ-ℕ n)) → P m cases-succ-strong-ind-ℕ P pS n H m (inl q) = H m q cases-succ-strong-ind-ℕ P pS n H .(succ-ℕ n) (inr refl) = pS n H succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) → ((k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → (k : ℕ) → (□-≤-ℕ P k) → (□-≤-ℕ P (succ-ℕ k)) succ-strong-ind-ℕ P pS k H m p = cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) cases-htpy-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → (k : ℕ) (H : □-≤-ℕ P k) (m : ℕ) (c : (leq-ℕ m k) + (m = succ-ℕ k)) → (q : leq-ℕ m k) → ( cases-succ-strong-ind-ℕ P pS k H m c) = ( H m q) cases-htpy-succ-strong-ind-ℕ P pS k H m (inl p) q = ap (H m) (eq-is-prop (is-prop-leq-ℕ m k)) cases-htpy-succ-strong-ind-ℕ P pS k H m (inr α) q = ex-falso (neg-succ-leq-ℕ k (concatenate-eq-leq-ℕ k (inv α) q)) htpy-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) → (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → (k : ℕ) (H : □-≤-ℕ P k) (m : ℕ) (p : leq-ℕ m (succ-ℕ k)) (q : leq-ℕ m k) → ( succ-strong-ind-ℕ P pS k H m p) = ( H m q) htpy-succ-strong-ind-ℕ P pS k H m p q = cases-htpy-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) q cases-eq-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → (k : ℕ) (H : □-≤-ℕ P k) (c : (leq-ℕ (succ-ℕ k) k) + (succ-ℕ k = succ-ℕ k)) → ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k) c)) = ( pS k H) cases-eq-succ-strong-ind-ℕ P pS k H (inl p) = ex-falso (neg-succ-leq-ℕ k p) cases-eq-succ-strong-ind-ℕ P pS k H (inr α) = ap ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k)) ∘ inr) ( eq-is-prop' (is-set-ℕ (succ-ℕ k) (succ-ℕ k)) α refl) eq-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → (k : ℕ) (H : □-≤-ℕ P k) (p : leq-ℕ (succ-ℕ k) (succ-ℕ k)) → ( (succ-strong-ind-ℕ P pS k H (succ-ℕ k) p)) = ( pS k H) eq-succ-strong-ind-ℕ P pS k H p = cases-eq-succ-strong-ind-ℕ P pS k H (cases-leq-succ-ℕ p)
The inductive step
induction-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) → (□-≤-ℕ P zero-ℕ) → ((k : ℕ) → (□-≤-ℕ P k) → (□-≤-ℕ P (succ-ℕ k))) → (n : ℕ) → □-≤-ℕ P n induction-strong-ind-ℕ P p0 pS zero-ℕ = p0 induction-strong-ind-ℕ P p0 pS (succ-ℕ n) = pS n (induction-strong-ind-ℕ P p0 pS n) computation-succ-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (p0 : □-≤-ℕ P zero-ℕ) → (pS : (k : ℕ) → (□-≤-ℕ P k) → (□-≤-ℕ P (succ-ℕ k))) → (n : ℕ) → ( induction-strong-ind-ℕ P p0 pS (succ-ℕ n)) = ( pS n (induction-strong-ind-ℕ P p0 pS n)) computation-succ-strong-ind-ℕ P p0 pS n = refl
The strong induction principle
strong-ind-ℕ : {l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) → (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) (n : ℕ) → P n strong-ind-ℕ P p0 pS = ε-□-≤-ℕ ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS)) compute-zero-strong-ind-ℕ : {l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → (pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → strong-ind-ℕ P p0 pS zero-ℕ = p0 compute-zero-strong-ind-ℕ P p0 pS = refl cases-eq-compute-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( α : ( m : ℕ) (p : leq-ℕ m n) → ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) = ( strong-ind-ℕ P p0 pS m)) → ( m : ℕ) (p : leq-ℕ m (succ-ℕ n)) → ( q : (leq-ℕ m n) + (m = succ-ℕ n)) → ( succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p) = ( strong-ind-ℕ P p0 pS m) cases-eq-compute-succ-strong-ind-ℕ P p0 pS n α m p (inl x) = ( htpy-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p x) ∙ ( α m x) cases-eq-compute-succ-strong-ind-ℕ P p0 pS n α .(succ-ℕ n) p (inr refl) = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) ( p)) ∙ ( inv ( ap ( cases-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( λ k H m p₁ → cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p₁)) n) ( succ-ℕ n)) ( cases-leq-succ-reflexive-leq-ℕ))) eq-compute-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( m : ℕ) (p : leq-ℕ m n) → ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) = ( strong-ind-ℕ P p0 pS m) eq-compute-succ-strong-ind-ℕ P p0 pS zero-ℕ zero-ℕ _ = refl eq-compute-succ-strong-ind-ℕ P p0 pS (succ-ℕ n) m p = cases-eq-compute-succ-strong-ind-ℕ P p0 pS n ( eq-compute-succ-strong-ind-ℕ P p0 pS n) m p ( cases-leq-succ-ℕ p) compute-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → strong-ind-ℕ P p0 pS (succ-ℕ n) = pS n (λ m p → strong-ind-ℕ P p0 pS m) compute-succ-strong-ind-ℕ P p0 pS n = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) ( n)) ( refl-leq-ℕ n)) ∙ ( ap ( pS n) ( eq-htpy (eq-htpy ∘ eq-compute-succ-strong-ind-ℕ P p0 pS n))) total-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (□-≤-ℕ P k) → P (succ-ℕ k)) → Σ ( (n : ℕ) → P n) ( λ h → ( h zero-ℕ = p0) × ( (n : ℕ) → h (succ-ℕ n) = pS n (λ m p → h m))) pr1 (total-strong-ind-ℕ P p0 pS) = strong-ind-ℕ P p0 pS pr1 (pr2 (total-strong-ind-ℕ P p0 pS)) = compute-zero-strong-ind-ℕ P p0 pS pr2 (pr2 (total-strong-ind-ℕ P p0 pS)) = compute-succ-strong-ind-ℕ P p0 pS
Strong recursion
module _ {l : Level} {A : UU l} (a0 : A) (aS : (k : ℕ) → (□-≤-ℕ (λ _ → A) k) → A) where strong-rec-ℕ : ℕ → A strong-rec-ℕ = strong-ind-ℕ (λ _ → A) a0 aS compute-zero-strong-rec-ℕ : strong-rec-ℕ 0 = a0 compute-zero-strong-rec-ℕ = compute-zero-strong-ind-ℕ (λ _ → A) a0 aS compute-succ-strong-rec-ℕ : (n : ℕ) → strong-rec-ℕ (succ-ℕ n) = aS n (λ m _ → strong-rec-ℕ m) compute-succ-strong-rec-ℕ = compute-succ-strong-ind-ℕ (λ _ → A) a0 aS
See also
- The based strong induction principle is defined in
based-strong-induction-natural-numbers
.
Recent changes
- 2024-08-26. Egbert Rijke. Fermat numbers (#1169).
- 2023-10-22. Fredrik Bakke and Egbert Rijke. Peano arithmetic (#876).
- 2023-10-16. Fredrik Bakke. Compatibility patch for Agda 2.6.4 (#846).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).