Powers of real numbers
Content created by Louis Wasserman.
Created on 2025-11-08.
Last modified on 2026-02-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.powers-real-numbers where
Imports
open import commutative-algebra.powers-of-elements-commutative-rings open import commutative-algebra.powers-of-elements-large-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonzero-natural-numbers open import elementary-number-theory.parity-natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.powers-positive-rational-numbers open import elementary-number-theory.powers-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.injective-maps open import foundation.propositional-truncations open import foundation.transport-along-identifications open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.pointwise-continuous-maps-metric-spaces open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.cofinal-and-coinitial-endomaps-real-numbers open import real-numbers.cofinal-and-coinitial-strictly-increasing-pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.large-ring-of-real-numbers open import real-numbers.lipschitz-continuity-multiplication-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-positive-and-negative-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.pointwise-continuous-endomaps-real-numbers open import real-numbers.pointwise-epsilon-delta-continuous-endomaps-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.real-sequences-approximating-zero open import real-numbers.similarity-real-numbers open import real-numbers.squares-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.strictly-increasing-endomaps-real-numbers open import real-numbers.strictly-increasing-pointwise-epsilon-delta-continuous-endomaps-real-numbers
Idea
The
power operation¶
on the real numbers n x ↦ xⁿ, is
defined by iteratively
multiplying x with itself n
times.
Note that this operation defines0⁰ to be the empty product, 1.
Definition
power-ℝ : {l : Level} → ℕ → ℝ l → ℝ l power-ℝ = power-Large-Commutative-Ring large-commutative-ring-ℝ
Properties
The canonical embedding of rational numbers preserves powers
abstract power-real-ℚ : (n : ℕ) (q : ℚ) → power-ℝ n (real-ℚ q) = real-ℚ (power-ℚ n q) power-real-ℚ n q = inv ( preserves-powers-hom-Commutative-Ring ( commutative-ring-ℚ) ( commutative-ring-ℝ lzero) ( hom-ring-real-ℚ) ( n) ( q))
1ⁿ = 1
abstract power-one-ℝ : (n : ℕ) → power-ℝ n one-ℝ = one-ℝ power-one-ℝ = power-one-Large-Commutative-Ring large-commutative-ring-ℝ
For nonzero n, 0ⁿ = 0
abstract power-nonzero-zero-ℝ : (n : ℕ⁺) → power-ℝ (nat-ℕ⁺ n) zero-ℝ = zero-ℝ power-nonzero-zero-ℝ = power-nonzero-zero-Large-Commutative-Ring large-commutative-ring-ℝ
xⁿ⁺¹ = xⁿx
abstract power-succ-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → power-ℝ (succ-ℕ n) x = power-ℝ n x *ℝ x power-succ-ℝ = power-succ-Large-Commutative-Ring large-commutative-ring-ℝ
xⁿ⁺¹ = xxⁿ
abstract power-succ-ℝ' : {l : Level} (n : ℕ) (x : ℝ l) → power-ℝ (succ-ℕ n) x = x *ℝ power-ℝ n x power-succ-ℝ' = power-succ-Large-Commutative-Ring' large-commutative-ring-ℝ
Powers by sums of natural numbers are products of powers
abstract distributive-power-add-ℝ : {l : Level} (m n : ℕ) {x : ℝ l} → power-ℝ (m +ℕ n) x = power-ℝ m x *ℝ power-ℝ n x distributive-power-add-ℝ = distributive-power-add-Large-Commutative-Ring large-commutative-ring-ℝ
Powers by products of natural numbers are iterated powers
abstract power-mul-ℝ : {l : Level} (m n : ℕ) {x : ℝ l} → power-ℝ (m *ℕ n) x = power-ℝ n (power-ℝ m x) power-mul-ℝ = power-mul-Large-Commutative-Ring large-commutative-ring-ℝ power-mul-ℝ' : {l : Level} (m n : ℕ) {x : ℝ l} → power-ℝ (m *ℕ n) x = power-ℝ m (power-ℝ n x) power-mul-ℝ' m n {x = x} = equational-reasoning power-ℝ (m *ℕ n) x = power-ℝ (n *ℕ m) x by ap (λ k → power-ℝ k x) (commutative-mul-ℕ m n) = power-ℝ m (power-ℝ n x) by power-mul-ℝ n m
(xy)ⁿ = xⁿyⁿ
abstract distributive-power-mul-ℝ : {l1 l2 : Level} (n : ℕ) {x : ℝ l1} {y : ℝ l2} → power-ℝ n (x *ℝ y) = power-ℝ n x *ℝ power-ℝ n y distributive-power-mul-ℝ = distributive-power-mul-Large-Commutative-Ring large-commutative-ring-ℝ
Even powers of real numbers are nonnegative
abstract is-nonnegative-even-power-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → is-even-ℕ n → is-nonnegative-ℝ (power-ℝ n x) is-nonnegative-even-power-ℝ _ x (k , refl) = inv-tr ( is-nonnegative-ℝ) ( power-mul-ℝ k 2) ( is-nonnegative-square-ℝ (power-ℝ k x)) nonnegative-even-power-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → is-even-ℕ n → ℝ⁰⁺ l nonnegative-even-power-ℝ n x even-n = ( power-ℝ n x , is-nonnegative-even-power-ℝ n x even-n)
Powers of positive real numbers are positive
abstract is-positive-power-ℝ⁺ : {l : Level} (n : ℕ) (x : ℝ⁺ l) → is-positive-ℝ (power-ℝ n (real-ℝ⁺ x)) is-positive-power-ℝ⁺ 0 _ = is-positive-sim-ℝ (sim-raise-ℝ _ _) (is-positive-real-ℝ⁺ one-ℝ⁺) is-positive-power-ℝ⁺ 1 (_ , is-pos-x) = is-pos-x is-positive-power-ℝ⁺ (succ-ℕ n@(succ-ℕ _)) x⁺@(x , is-pos-x) = is-positive-mul-ℝ (is-positive-power-ℝ⁺ n x⁺) is-pos-x power-ℝ⁺ : {l : Level} → ℕ → ℝ⁺ l → ℝ⁺ l power-ℝ⁺ n x⁺@(x , _) = (power-ℝ n x , is-positive-power-ℝ⁺ n x⁺)
Powers of nonnegative real numbers are nonnegative
abstract is-nonnegative-power-ℝ⁰⁺ : {l : Level} (n : ℕ) (x : ℝ⁰⁺ l) → is-nonnegative-ℝ (power-ℝ n (real-ℝ⁰⁺ x)) is-nonnegative-power-ℝ⁰⁺ {l} 0 _ = is-nonnegative-real-ℝ⁰⁺ (raise-ℝ⁰⁺ l one-ℝ⁰⁺) is-nonnegative-power-ℝ⁰⁺ 1 (x , is-nonneg-x) = is-nonneg-x is-nonnegative-power-ℝ⁰⁺ (succ-ℕ n@(succ-ℕ _)) x⁰⁺@(x , is-nonneg-x) = is-nonnegative-mul-ℝ ( is-nonnegative-power-ℝ⁰⁺ n x⁰⁺) ( is-nonneg-x) power-ℝ⁰⁺ : {l : Level} → ℕ → ℝ⁰⁺ l → ℝ⁰⁺ l power-ℝ⁰⁺ n x⁰⁺@(x , _) = (power-ℝ n x , is-nonnegative-power-ℝ⁰⁺ n x⁰⁺)
Even powers of negative real numbers are positive
abstract is-positive-even-power-ℝ⁻ : {l : Level} (n : ℕ) (x : ℝ⁻ l) → is-even-ℕ n → is-positive-ℝ (power-ℝ n (real-ℝ⁻ x)) is-positive-even-power-ℝ⁻ _ x (k , refl) = inv-tr ( is-positive-ℝ) ( power-mul-ℝ' k 2) ( is-positive-power-ℝ⁺ k (square-ℝ⁻ x))
Odd powers of negative real numbers are negative
abstract is-negative-odd-power-ℝ⁻ : {l : Level} (n : ℕ) (x : ℝ⁻ l) → is-odd-ℕ n → is-negative-ℝ (power-ℝ n (real-ℝ⁻ x)) is-negative-odd-power-ℝ⁻ n x⁻@(x , is-neg-x) odd-n = let (k , k2+1=n) = has-odd-expansion-is-odd n odd-n in tr ( is-negative-ℝ) ( equational-reasoning power-ℝ (k *ℕ 2) x *ℝ x = power-ℝ (succ-ℕ (k *ℕ 2)) x by inv (power-succ-ℝ _ _) = power-ℝ n x by ap (λ m → power-ℝ m x) k2+1=n) ( is-negative-mul-positive-negative-ℝ ( is-positive-even-power-ℝ⁻ _ x⁻ (k , refl)) ( is-neg-x))
For even n, (-x)ⁿ = xⁿ
abstract power-neg-is-even-exponent-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → is-even-ℕ n → power-ℝ n (neg-ℝ x) = power-ℝ n x power-neg-is-even-exponent-ℝ _ x (k , refl) = equational-reasoning power-ℝ (k *ℕ 2) (neg-ℝ x) = power-ℝ k (square-ℝ (neg-ℝ x)) by power-mul-ℝ' k 2 = power-ℝ k (square-ℝ x) by ap (power-ℝ k) (square-neg-ℝ x) = power-ℝ (k *ℕ 2) x by inv (power-mul-ℝ' k 2)
For odd n, (-x)ⁿ = -(xⁿ)
abstract power-neg-is-odd-exponent-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → is-odd-ℕ n → power-ℝ n (neg-ℝ x) = neg-ℝ (power-ℝ n x) power-neg-is-odd-exponent-ℝ n x odd-n = let (k , k2+1=n) = has-odd-expansion-is-odd n odd-n in equational-reasoning power-ℝ n (neg-ℝ x) = power-ℝ (succ-ℕ (k *ℕ 2)) (neg-ℝ x) by ap (λ m → power-ℝ m (neg-ℝ x)) (inv k2+1=n) = power-ℝ (k *ℕ 2) (neg-ℝ x) *ℝ neg-ℝ x by power-succ-ℝ _ _ = power-ℝ (k *ℕ 2) x *ℝ neg-ℝ x by ap-mul-ℝ (power-neg-is-even-exponent-ℝ _ x (k , refl)) refl = neg-ℝ (power-ℝ (k *ℕ 2) x *ℝ x) by right-negative-law-mul-ℝ _ _ = neg-ℝ (power-ℝ (succ-ℕ (k *ℕ 2)) x) by ap neg-ℝ (inv (power-succ-ℝ _ _)) = neg-ℝ (power-ℝ n x) by ap neg-ℝ (ap (λ m → power-ℝ m x) k2+1=n)
|x|ⁿ = |xⁿ|
abstract power-abs-ℝ : {l : Level} (n : ℕ) (x : ℝ l) → power-ℝ n (abs-ℝ x) = abs-ℝ (power-ℝ n x) power-abs-ℝ 0 x = inv (abs-real-ℝ⁺ (raise-ℝ⁺ _ one-ℝ⁺)) power-abs-ℝ (succ-ℕ n) x = equational-reasoning power-ℝ (succ-ℕ n) (abs-ℝ x) = power-ℝ n (abs-ℝ x) *ℝ abs-ℝ x by power-succ-ℝ _ _ = abs-ℝ (power-ℝ n x) *ℝ abs-ℝ x by ap-mul-ℝ (power-abs-ℝ n x) refl = abs-ℝ (power-ℝ n x *ℝ x) by inv (abs-mul-ℝ _ _) = abs-ℝ (power-ℝ (succ-ℕ n) x) by ap abs-ℝ (inv (power-succ-ℝ n x))
If |p| ≤ |q|, |pⁿ| ≤ |qⁿ|
abstract preserves-leq-abs-power-ℝ : {l1 l2 : Level} (n : ℕ) (x : ℝ l1) (y : ℝ l2) → leq-ℝ (abs-ℝ x) (abs-ℝ y) → leq-ℝ (abs-ℝ (power-ℝ n x)) (abs-ℝ (power-ℝ n y)) preserves-leq-abs-power-ℝ 0 _ _ _ = preserves-leq-sim-ℝ ( inv-tr ( sim-ℝ one-ℝ) ( abs-real-ℝ⁺ (raise-ℝ⁺ _ one-ℝ⁺)) ( sim-raise-ℝ _ one-ℝ)) ( inv-tr ( sim-ℝ one-ℝ) ( abs-real-ℝ⁺ (raise-ℝ⁺ _ one-ℝ⁺)) ( sim-raise-ℝ _ one-ℝ)) ( refl-leq-ℝ one-ℝ) preserves-leq-abs-power-ℝ (succ-ℕ n) x y |x|≤|y| = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities abs-ℝ (power-ℝ (succ-ℕ n) x) ≤ abs-ℝ (power-ℝ n x *ℝ x) by leq-eq-ℝ (ap abs-ℝ (power-succ-ℝ n x)) ≤ abs-ℝ (power-ℝ n x) *ℝ abs-ℝ x by leq-eq-ℝ (abs-mul-ℝ _ _) ≤ abs-ℝ (power-ℝ n y) *ℝ abs-ℝ y by preserves-leq-mul-ℝ⁰⁺ ( nonnegative-abs-ℝ (power-ℝ n x)) ( nonnegative-abs-ℝ (power-ℝ n y)) ( nonnegative-abs-ℝ x) ( nonnegative-abs-ℝ y) ( preserves-leq-abs-power-ℝ n x y |x|≤|y|) ( |x|≤|y|) ≤ abs-ℝ (power-ℝ n y *ℝ y) by leq-eq-ℝ (inv (abs-mul-ℝ _ _)) ≤ abs-ℝ (power-ℝ (succ-ℕ n) y) by leq-eq-ℝ (ap abs-ℝ (inv (power-succ-ℝ n y)))
If x and y are nonnegative such that x ≤ y, then xⁿ ≤ yⁿ
abstract preserves-leq-power-real-ℝ⁰⁺ : {l1 l2 : Level} (n : ℕ) (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) → leq-ℝ⁰⁺ x y → leq-ℝ (power-ℝ n (real-ℝ⁰⁺ x)) (power-ℝ n (real-ℝ⁰⁺ y)) preserves-leq-power-real-ℝ⁰⁺ {l1} {l2} 0 _ _ _ = leq-sim-ℝ (sim-raise-raise-ℝ l1 l2 one-ℝ) preserves-leq-power-real-ℝ⁰⁺ (succ-ℕ n) x⁰⁺@(x , _) y⁰⁺@(y , _) x≤y = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities power-ℝ (succ-ℕ n) x ≤ power-ℝ n x *ℝ x by leq-eq-ℝ (power-succ-ℝ n x) ≤ power-ℝ n y *ℝ y by preserves-leq-mul-ℝ⁰⁺ ( power-ℝ⁰⁺ n x⁰⁺) ( power-ℝ⁰⁺ n y⁰⁺) ( x⁰⁺) ( y⁰⁺) ( preserves-leq-power-real-ℝ⁰⁺ n x⁰⁺ y⁰⁺ x≤y) ( x≤y) ≤ power-ℝ (succ-ℕ n) y by leq-eq-ℝ (inv (power-succ-ℝ n y))
If |r| < 1, then rⁿ approaches 0
abstract is-zero-lim-power-le-one-abs-ℝ : {l : Level} (r : ℝ l) → le-ℝ (abs-ℝ r) one-ℝ → is-zero-limit-sequence-ℝ (λ n → power-ℝ n r) is-zero-lim-power-le-one-abs-ℝ r |r|<1 = let open do-syntax-trunc-Prop (is-zero-limit-prop-sequence-ℝ (λ n → power-ℝ n r)) open inequality-reasoning-Large-Poset ℝ-Large-Poset in do (ε , |r|<ε , ε<1ℝ) ← dense-rational-le-ℝ _ _ |r|<1 let is-pos-ε = reflects-is-positive-real-ℚ ( is-positive-le-ℝ⁰⁺ (nonnegative-abs-ℝ r) (real-ℚ ε) |r|<ε) ε⁺ = (ε , is-pos-ε) is-zero-limit-sequence-leq-abs-rational-zero-limit-sequence-ℝ ( λ n → power-ℝ n r) ( (λ n → rational-ℚ⁺ (power-ℚ⁺ n ε⁺)) , is-zero-limit-power-le-one-ℚ⁺ ε⁺ (reflects-le-real-ℚ ε<1ℝ)) ( λ n → chain-of-inequalities abs-ℝ (power-ℝ n r) ≤ abs-ℝ (power-ℝ n (real-ℚ ε)) by preserves-leq-abs-power-ℝ ( n) ( r) ( real-ℚ ε) ( inv-tr ( leq-ℝ (abs-ℝ r)) ( abs-real-ℝ⁺ (positive-real-ℚ⁺ ε⁺)) ( leq-le-ℝ |r|<ε)) ≤ power-ℝ n (real-ℚ ε) by leq-eq-ℝ (abs-real-ℝ⁺ (power-ℝ⁺ n (positive-real-ℚ⁺ ε⁺))) ≤ real-ℚ (power-ℚ n ε) by leq-eq-ℝ (power-real-ℚ n ε) ≤ real-ℚ⁺ (power-ℚ⁺ n ε⁺) by leq-eq-ℝ (ap real-ℚ (power-rational-ℚ⁺ n ε⁺)))
The power operation preserves similarity
abstract preserves-sim-power-ℝ : {l1 l2 : Level} (n : ℕ) {x : ℝ l1} {y : ℝ l2} → sim-ℝ x y → sim-ℝ (power-ℝ n x) (power-ℝ n y) preserves-sim-power-ℝ {l1} {l2} 0 _ = sim-raise-raise-ℝ l1 l2 one-ℝ preserves-sim-power-ℝ 1 x~y = x~y preserves-sim-power-ℝ (succ-ℕ n@(succ-ℕ _)) x~y = preserves-sim-mul-ℝ (preserves-sim-power-ℝ n x~y) x~y power-raise-ℝ : {l1 : Level} (l2 : Level) (n : ℕ) (x : ℝ l1) → power-ℝ n (raise-ℝ l2 x) = raise-ℝ l2 (power-ℝ n x) power-raise-ℝ l n x = eq-sim-ℝ ( transitive-sim-ℝ _ _ _ ( sim-raise-ℝ l _) ( preserves-sim-power-ℝ n (sim-raise-ℝ' l x)))
For any n, x ↦ xⁿ is pointwise continuous
abstract is-pointwise-continuous-power-ℝ : (l : Level) (n : ℕ) → is-pointwise-continuous-endomap-ℝ (power-ℝ {l} n) is-pointwise-continuous-power-ℝ l 0 = is-pointwise-continuous-endomap-const-ℝ l (raise-one-ℝ l) is-pointwise-continuous-power-ℝ l 1 = is-pointwise-continuous-endomap-id-ℝ l is-pointwise-continuous-power-ℝ l (succ-ℕ n@(succ-ℕ _)) = is-pointwise-continuous-map-comp-pointwise-continuous-map-Metric-Space ( metric-space-ℝ l) ( product-Metric-Space (metric-space-ℝ l) (metric-space-ℝ l)) ( metric-space-ℝ l) ( pointwise-continuous-map-mul-pair-ℝ l l) ( comp-pointwise-continuous-map-Metric-Space ( metric-space-ℝ l) ( product-Metric-Space (metric-space-ℝ l) (metric-space-ℝ l)) ( product-Metric-Space (metric-space-ℝ l) (metric-space-ℝ l)) ( pointwise-continuous-map-product-Metric-Space _ _ _ _ ( power-ℝ n , is-pointwise-continuous-power-ℝ l n) ( pointwise-continuous-endomap-id-ℝ l)) ( pointwise-continuous-map-isometry-Metric-Space _ _ ( diagonal-product-isometry-Metric-Space (metric-space-ℝ l)))) pointwise-continuous-power-ℝ : (l : Level) (n : ℕ) → pointwise-continuous-endomap-ℝ l l pointwise-continuous-power-ℝ l n = ( power-ℝ n , is-pointwise-continuous-power-ℝ l n) abstract is-pointwise-ε-δ-continuous-power-ℝ : (l : Level) (n : ℕ) → is-pointwise-ε-δ-continuous-endomap-ℝ (power-ℝ {l} n) is-pointwise-ε-δ-continuous-power-ℝ l n = is-pointwise-ε-δ-continuous-map-pointwise-continuous-endomap-ℝ ( pointwise-continuous-power-ℝ l n) pointwise-ε-δ-continuous-power-ℝ : (l : Level) (n : ℕ) → pointwise-ε-δ-continuous-endomap-ℝ l l pointwise-ε-δ-continuous-power-ℝ l n = ( power-ℝ n , is-pointwise-ε-δ-continuous-power-ℝ l n)
For rational q, real-ℚ (power-ℚ n q) is similar to power-ℝ n (raise-real-ℚ l q)
abstract sim-power-raise-real-ℚ : (l : Level) (n : ℕ) (q : ℚ) → sim-ℝ (real-ℚ (power-ℚ n q)) (power-ℝ n (raise-real-ℚ l q)) sim-power-raise-real-ℚ l n q = concat-eq-sim-ℝ ( inv (power-real-ℚ n q)) ( preserves-sim-power-ℝ n (sim-raise-ℝ l (real-ℚ q)))
For odd n, x ↦ xⁿ is strictly increasing
abstract is-strictly-increasing-power-is-odd-exponent-ℝ : (l : Level) (n : ℕ) → is-odd-ℕ n → is-strictly-increasing-endomap-ℝ (power-ℝ {l} n) is-strictly-increasing-power-is-odd-exponent-ℝ l n odd-n = is-strictly-increasing-is-strictly-increasing-rational-pointwise-ε-δ-continuous-endomap-ℝ ( pointwise-ε-δ-continuous-power-ℝ l n) ( λ p q p<q → preserves-le-sim-ℝ ( sim-power-raise-real-ℚ l n p) ( sim-power-raise-real-ℚ l n q) ( preserves-le-real-ℚ ( preserves-le-power-is-odd-exponent-ℚ n p q odd-n p<q)))
For odd n, x ↦ xⁿ is injective
abstract is-injective-power-is-odd-exponent-ℝ : (l : Level) (n : ℕ) → is-odd-ℕ n → is-injective (power-ℝ {l} n) is-injective-power-is-odd-exponent-ℝ l n odd-n = is-injective-is-strictly-increasing-endomap-ℝ ( power-ℝ n) ( is-strictly-increasing-power-is-odd-exponent-ℝ l n odd-n)
For odd n, x ↦ xⁿ is cofinal and coinitial
abstract is-cofinal-power-is-odd-exponent-ℝ : (l : Level) (n : ℕ) → is-odd-ℕ n → is-cofinal-endomap-ℝ (power-ℝ {l} n) is-cofinal-power-is-odd-exponent-ℝ l n odd-n q = map-exists _ ( raise-real-ℚ l) ( λ p q≤pⁿ → preserves-leq-right-sim-ℝ ( sim-power-raise-real-ℚ l n p) ( preserves-leq-real-ℚ q≤pⁿ)) ( is-cofinal-power-is-odd-ℚ n odd-n q) is-coinitial-power-is-odd-exponent-ℝ : (l : Level) (n : ℕ) → is-odd-ℕ n → is-coinitial-endomap-ℝ (power-ℝ {l} n) is-coinitial-power-is-odd-exponent-ℝ l n odd-n q = map-exists _ ( raise-real-ℚ l) ( λ p pⁿ≤q → preserves-leq-left-sim-ℝ ( sim-power-raise-real-ℚ l n p) ( preserves-leq-real-ℚ pⁿ≤q)) ( is-coinitial-power-is-odd-ℚ n odd-n q)
Recent changes
- 2026-02-11. Louis Wasserman. Nonzero roots of nonnegative real numbers (#1835).
- 2026-02-07. Louis Wasserman. Odd roots of real numbers (#1739).
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).