Trivial groups

Content created by Egbert Rijke, Fredrik Bakke and Garrett Figueroa.

Created on 2023-10-08.
Last modified on 2024-04-11.

module group-theory.trivial-groups where
Imports
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.raising-universe-levels
open import foundation.structure-identity-principle
open import foundation.unit-type
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.full-subgroups
open import group-theory.groups
open import group-theory.subgroups
open import group-theory.trivial-subgroups

Idea

A group is said to be trivial if its underlying type is contractible. In other words, a group is trivial if it consists only of the unit element.

Definitions

The predicate of being a trivial group

module _
  {l1 : Level} (G : Group l1)
  where

  is-trivial-prop-Group : Prop l1
  is-trivial-prop-Group = is-contr-Prop (type-Group G)

  is-trivial-Group : UU l1
  is-trivial-Group = type-Prop is-trivial-prop-Group

The type of trivial groups

Trivial-Group : (l : Level)  UU (lsuc l)
Trivial-Group l = Σ (Group l) is-trivial-Group

The trivial group

trivial-Group : Group lzero
pr1 (pr1 trivial-Group) = unit-Set
pr1 (pr2 (pr1 trivial-Group)) x y = star
pr2 (pr2 (pr1 trivial-Group)) x y z = refl
pr1 (pr2 trivial-Group) = (star , (refl-htpy , refl-htpy))
pr2 (pr2 trivial-Group) = ((λ x  star) , refl-htpy , refl-htpy)

Properties

The type of subgroups of a trivial group is contractible

module _
  {l1 : Level} (G : Group l1)
  where

  abstract
    is-contr-subgroup-is-trivial-Group :
      is-trivial-Group G  is-contr (Subgroup l1 G)
    pr1 (is-contr-subgroup-is-trivial-Group H) =
      trivial-Subgroup G
    pr2 (is-contr-subgroup-is-trivial-Group H) K =
      eq-has-same-elements-Subgroup G
        ( trivial-Subgroup G)
        ( K)
        ( λ x 
          ( λ where refl  contains-unit-Subgroup G K) ,
          ( λ _ 
            is-closed-under-eq-Subgroup G
              ( trivial-Subgroup G)
              ( contains-unit-Subgroup G (trivial-Subgroup G))
              ( eq-is-contr H)))

The trivial group is abelian

is-abelian-trivial-Group : is-abelian-Group trivial-Group
is-abelian-trivial-Group x y = refl

trivial-Ab : Ab lzero
trivial-Ab = (trivial-Group , is-abelian-trivial-Group)

Recent changes