Trivial groups
Content created by Egbert Rijke, Fredrik Bakke and Garrett Figueroa.
Created on 2023-10-08.
Last modified on 2024-04-11.
module group-theory.trivial-groups where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.raising-universe-levels open import foundation.structure-identity-principle open import foundation.unit-type open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.full-subgroups open import group-theory.groups open import group-theory.subgroups open import group-theory.trivial-subgroups
Idea
A group is said to be trivial if its underlying type is contractible. In other words, a group is trivial if it consists only of the unit element.
Definitions
The predicate of being a trivial group
module _ {l1 : Level} (G : Group l1) where is-trivial-prop-Group : Prop l1 is-trivial-prop-Group = is-contr-Prop (type-Group G) is-trivial-Group : UU l1 is-trivial-Group = type-Prop is-trivial-prop-Group
The type of trivial groups
Trivial-Group : (l : Level) → UU (lsuc l) Trivial-Group l = Σ (Group l) is-trivial-Group
The trivial group
trivial-Group : Group lzero pr1 (pr1 trivial-Group) = unit-Set pr1 (pr2 (pr1 trivial-Group)) x y = star pr2 (pr2 (pr1 trivial-Group)) x y z = refl pr1 (pr2 trivial-Group) = (star , (refl-htpy , refl-htpy)) pr2 (pr2 trivial-Group) = ((λ x → star) , refl-htpy , refl-htpy)
Properties
The type of subgroups of a trivial group is contractible
module _ {l1 : Level} (G : Group l1) where abstract is-contr-subgroup-is-trivial-Group : is-trivial-Group G → is-contr (Subgroup l1 G) pr1 (is-contr-subgroup-is-trivial-Group H) = trivial-Subgroup G pr2 (is-contr-subgroup-is-trivial-Group H) K = eq-has-same-elements-Subgroup G ( trivial-Subgroup G) ( K) ( λ x → ( λ where refl → contains-unit-Subgroup G K) , ( λ _ → is-closed-under-eq-Subgroup G ( trivial-Subgroup G) ( contains-unit-Subgroup G (trivial-Subgroup G)) ( eq-is-contr H)))
The trivial group is abelian
is-abelian-trivial-Group : is-abelian-Group trivial-Group is-abelian-trivial-Group x y = refl trivial-Ab : Ab lzero trivial-Ab = (trivial-Group , is-abelian-trivial-Group)
Recent changes
- 2024-04-11. Garrett Figueroa. Adding explicit zero algebras (#1095).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-10-08. Egbert Rijke and Fredrik Bakke. Nontrivial groups, and a correction of a statement in torsion-free groups (#815).