Preimages of left module structures along homomorphisms of rings

Content created by malarbol.

Created on 2025-07-27.
Last modified on 2025-07-27.

module linear-algebra.preimages-of-left-module-structures-along-homomorphisms-of-rings where
Imports
open import elementary-number-theory.ring-of-integers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.addition-homomorphisms-abelian-groups
open import group-theory.endomorphism-rings-abelian-groups
open import group-theory.homomorphisms-abelian-groups

open import linear-algebra.left-modules-rings
open import linear-algebra.linear-maps-left-modules-rings

open import ring-theory.function-rings
open import ring-theory.homomorphisms-rings
open import ring-theory.isomorphisms-rings
open import ring-theory.opposite-rings
open import ring-theory.rings

Idea

Given two rings R and S and an homomorphism f : R → S between them, any left module A over S is also an R-left-module via the action (r : R) ↦ (a : A) ↦ (f r) · a. This is the preimage left module of a left module along the ring homomorphism f.

The preimage of left modules acts contravariantly on homomorphisms of rings:

  • the preimage along the identity homomorphism is the identity of left modules;
  • the preimage of a left module along a composition g ∘ f is the preimage by f of its preimage by g.

In particular preimages along isomorphisms of rings are equivalences.

Definitions

The preimage left module of a left module along an homomorphism of rings

module _
  {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : hom-Ring R S)
  where

  preimage-hom-ring-left-module-Ring :
    left-module-Ring la S  left-module-Ring la R
  preimage-hom-ring-left-module-Ring =
    tot
      ( λ A h 
        comp-hom-Ring
          ( R)
          ( S)
          ( endomorphism-ring-Ab A)
          ( h)
          ( f))

  preserves-ab-preimage-hom-ring-left-module-Ring :
    (A : left-module-Ring la S) 
    ab-left-module-Ring R (preimage-hom-ring-left-module-Ring A) 
    ab-left-module-Ring S A
  preserves-ab-preimage-hom-ring-left-module-Ring A = refl

Properties

Homomorphisms of rings act contravariantly on module structures over an abelian group

module _
  {lr la : Level} (R : Ring lr)
  where

  htpy-id-preimage-id-hom-ring-left-module-Ring :
    (A : left-module-Ring la R) 
    preimage-hom-ring-left-module-Ring R R (id-hom-Ring R) A  A
  htpy-id-preimage-id-hom-ring-left-module-Ring (A , h) =
    eq-pair-eq-fiber
      ( right-unit-law-comp-hom-Ring R (endomorphism-ring-Ab A) h)

module _
  {lr ls lt la : Level} (R : Ring lr) (S : Ring ls) (T : Ring lt)
  (g : hom-Ring S T)
  (f : hom-Ring R S)
  where

  htpy-comp-preimage-hom-ring-left-module-Ring :
    (A : left-module-Ring la T) 
    preimage-hom-ring-left-module-Ring
      ( R)
      ( T)
      ( comp-hom-Ring R S T g f)
      ( A) 
    preimage-hom-ring-left-module-Ring
      ( R)
      ( S)
      ( f)
      ( preimage-hom-ring-left-module-Ring
        ( S)
        ( T)
        ( g)
        ( A))
  htpy-comp-preimage-hom-ring-left-module-Ring (A , h) =
    eq-pair-eq-fiber
      ( inv
        (associative-comp-hom-Ring
        ( R)
        ( S)
        ( T)
        ( endomorphism-ring-Ab A)
        ( h)
        ( g)
        ( f)))

The preimage of left modules along an isomorphism is an equivalence

module _
  {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : iso-Ring R S)
  where

  is-equiv-preimage-iso-ring-left-module-Ring :
    is-equiv
      ( λ (A : left-module-Ring la S) 
        preimage-hom-ring-left-module-Ring R S (hom-iso-Ring R S f) A)
  is-equiv-preimage-iso-ring-left-module-Ring =
    is-equiv-is-invertible
      ( preimage-hom-ring-left-module-Ring S R (hom-inv-iso-Ring R S f))
      ( λ (A , h) 
        ( inv
          ( htpy-comp-preimage-hom-ring-left-module-Ring
            ( R)
            ( S)
            ( R)
            ( hom-inv-iso-Ring R S f)
            ( hom-iso-Ring R S f)
            ( A , h))) 
        ( eq-pair-eq-fiber
          ( ( ap
              ( comp-hom-Ring R R (endomorphism-ring-Ab A) h)
              ( is-retraction-hom-inv-iso-Ring R S f)) 
            ( right-unit-law-comp-hom-Ring R (endomorphism-ring-Ab A) h))))
      ( λ (A , h) 
        ( inv
          ( htpy-comp-preimage-hom-ring-left-module-Ring
            ( S)
            ( R)
            ( S)
            ( hom-iso-Ring R S f)
            ( hom-inv-iso-Ring R S f)
            ( A , h))) 
        ( eq-pair-eq-fiber
          ( ( ap
              ( comp-hom-Ring S S (endomorphism-ring-Ab A) h)
              ( is-section-hom-inv-iso-Ring R S f)) 
            ( right-unit-law-comp-hom-Ring S (endomorphism-ring-Ab A) h))))

Left modules over isomorphic rings are equivalent

module _
  {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : iso-Ring R S)
  where

  equiv-left-module-iso-Ring' :
    left-module-Ring la S  left-module-Ring la R
  equiv-left-module-iso-Ring' =
    ( preimage-hom-ring-left-module-Ring R S (hom-iso-Ring R S f)) ,
    ( is-equiv-preimage-iso-ring-left-module-Ring R S f)

  equiv-left-module-iso-Ring :
    left-module-Ring la R  left-module-Ring la S
  equiv-left-module-iso-Ring =
    inv-equiv equiv-left-module-iso-Ring'

Preimages of left modules along ring homomorphisms preserve linear maps

module _
  {lr ls la lb : Level}
  (R : Ring lr) (S : Ring ls) (f : hom-Ring R S)
  (A : left-module-Ring la S)
  (B : left-module-Ring lb S)
  (h : linear-map-left-module-Ring S A B)
  where

  is-linear-map-linear-preimage-hom-ring-left-module-Ring :
    is-linear-map-left-module-Ring
      ( R)
      ( preimage-hom-ring-left-module-Ring R S f A)
      ( preimage-hom-ring-left-module-Ring R S f B)
      ( map-linear-map-left-module-Ring S A B h)
  is-linear-map-linear-preimage-hom-ring-left-module-Ring =
    ( is-additive-map-linear-map-left-module-Ring S A B h) ,
    ( is-homogeneous-map-linear-map-left-module-Ring S A B h 
      map-hom-Ring R S f)

  linear-map-linear-preimage-hom-ring-left-module-Ring :
    linear-map-left-module-Ring
      ( R)
      ( preimage-hom-ring-left-module-Ring R S f A)
      ( preimage-hom-ring-left-module-Ring R S f B)
  linear-map-linear-preimage-hom-ring-left-module-Ring =
    ( map-linear-map-left-module-Ring S A B h) ,
    ( is-linear-map-linear-preimage-hom-ring-left-module-Ring)

Recent changes