Preimages of left module structures along homomorphisms of rings
Content created by malarbol.
Created on 2025-07-27.
Last modified on 2025-07-27.
module linear-algebra.preimages-of-left-module-structures-along-homomorphisms-of-rings where
Imports
open import elementary-number-theory.ring-of-integers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.addition-homomorphisms-abelian-groups open import group-theory.endomorphism-rings-abelian-groups open import group-theory.homomorphisms-abelian-groups open import linear-algebra.left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import ring-theory.function-rings open import ring-theory.homomorphisms-rings open import ring-theory.isomorphisms-rings open import ring-theory.opposite-rings open import ring-theory.rings
Idea
Given two rings R
and S
and an
homomorphism f : R → S
between them, any
left module A
over S
is also an
R
-left-module via the action (r : R) ↦ (a : A) ↦ (f r) · a
. This is the
preimage left module¶ of a
left module along the ring homomorphism f
.
The preimage of left modules acts contravariantly on homomorphisms of rings:
- the preimage along the identity homomorphism is the identity of left modules;
- the preimage of a left module along a composition
g ∘ f
is the preimage byf
of its preimage byg
.
In particular preimages along isomorphisms of rings are equivalences.
Definitions
The preimage left module of a left module along an homomorphism of rings
module _ {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : hom-Ring R S) where preimage-hom-ring-left-module-Ring : left-module-Ring la S → left-module-Ring la R preimage-hom-ring-left-module-Ring = tot ( λ A h → comp-hom-Ring ( R) ( S) ( endomorphism-ring-Ab A) ( h) ( f)) preserves-ab-preimage-hom-ring-left-module-Ring : (A : left-module-Ring la S) → ab-left-module-Ring R (preimage-hom-ring-left-module-Ring A) = ab-left-module-Ring S A preserves-ab-preimage-hom-ring-left-module-Ring A = refl
Properties
Homomorphisms of rings act contravariantly on module structures over an abelian group
module _ {lr la : Level} (R : Ring lr) where htpy-id-preimage-id-hom-ring-left-module-Ring : (A : left-module-Ring la R) → preimage-hom-ring-left-module-Ring R R (id-hom-Ring R) A = A htpy-id-preimage-id-hom-ring-left-module-Ring (A , h) = eq-pair-eq-fiber ( right-unit-law-comp-hom-Ring R (endomorphism-ring-Ab A) h) module _ {lr ls lt la : Level} (R : Ring lr) (S : Ring ls) (T : Ring lt) (g : hom-Ring S T) (f : hom-Ring R S) where htpy-comp-preimage-hom-ring-left-module-Ring : (A : left-module-Ring la T) → preimage-hom-ring-left-module-Ring ( R) ( T) ( comp-hom-Ring R S T g f) ( A) = preimage-hom-ring-left-module-Ring ( R) ( S) ( f) ( preimage-hom-ring-left-module-Ring ( S) ( T) ( g) ( A)) htpy-comp-preimage-hom-ring-left-module-Ring (A , h) = eq-pair-eq-fiber ( inv (associative-comp-hom-Ring ( R) ( S) ( T) ( endomorphism-ring-Ab A) ( h) ( g) ( f)))
The preimage of left modules along an isomorphism is an equivalence
module _ {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : iso-Ring R S) where is-equiv-preimage-iso-ring-left-module-Ring : is-equiv ( λ (A : left-module-Ring la S) → preimage-hom-ring-left-module-Ring R S (hom-iso-Ring R S f) A) is-equiv-preimage-iso-ring-left-module-Ring = is-equiv-is-invertible ( preimage-hom-ring-left-module-Ring S R (hom-inv-iso-Ring R S f)) ( λ (A , h) → ( inv ( htpy-comp-preimage-hom-ring-left-module-Ring ( R) ( S) ( R) ( hom-inv-iso-Ring R S f) ( hom-iso-Ring R S f) ( A , h))) ∙ ( eq-pair-eq-fiber ( ( ap ( comp-hom-Ring R R (endomorphism-ring-Ab A) h) ( is-retraction-hom-inv-iso-Ring R S f)) ∙ ( right-unit-law-comp-hom-Ring R (endomorphism-ring-Ab A) h)))) ( λ (A , h) → ( inv ( htpy-comp-preimage-hom-ring-left-module-Ring ( S) ( R) ( S) ( hom-iso-Ring R S f) ( hom-inv-iso-Ring R S f) ( A , h))) ∙ ( eq-pair-eq-fiber ( ( ap ( comp-hom-Ring S S (endomorphism-ring-Ab A) h) ( is-section-hom-inv-iso-Ring R S f)) ∙ ( right-unit-law-comp-hom-Ring S (endomorphism-ring-Ab A) h))))
Left modules over isomorphic rings are equivalent
module _ {lr ls la : Level} (R : Ring lr) (S : Ring ls) (f : iso-Ring R S) where equiv-left-module-iso-Ring' : left-module-Ring la S ≃ left-module-Ring la R equiv-left-module-iso-Ring' = ( preimage-hom-ring-left-module-Ring R S (hom-iso-Ring R S f)) , ( is-equiv-preimage-iso-ring-left-module-Ring R S f) equiv-left-module-iso-Ring : left-module-Ring la R ≃ left-module-Ring la S equiv-left-module-iso-Ring = inv-equiv equiv-left-module-iso-Ring'
Preimages of left modules along ring homomorphisms preserve linear maps
module _ {lr ls la lb : Level} (R : Ring lr) (S : Ring ls) (f : hom-Ring R S) (A : left-module-Ring la S) (B : left-module-Ring lb S) (h : linear-map-left-module-Ring S A B) where is-linear-map-linear-preimage-hom-ring-left-module-Ring : is-linear-map-left-module-Ring ( R) ( preimage-hom-ring-left-module-Ring R S f A) ( preimage-hom-ring-left-module-Ring R S f B) ( map-linear-map-left-module-Ring S A B h) is-linear-map-linear-preimage-hom-ring-left-module-Ring = ( is-additive-map-linear-map-left-module-Ring S A B h) , ( is-homogeneous-map-linear-map-left-module-Ring S A B h ∘ map-hom-Ring R S f) linear-map-linear-preimage-hom-ring-left-module-Ring : linear-map-left-module-Ring ( R) ( preimage-hom-ring-left-module-Ring R S f A) ( preimage-hom-ring-left-module-Ring R S f B) linear-map-linear-preimage-hom-ring-left-module-Ring = ( map-linear-map-left-module-Ring S A B h) , ( is-linear-map-linear-preimage-hom-ring-left-module-Ring)
Recent changes
- 2025-07-27. malarbol. Some standard results on rings and modules (#1454).