Medial magmas
Content created by Garrett Figueroa.
Created on 2025-08-03.
Last modified on 2025-08-03.
module structured-types.medial-magmas where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import structured-types.h-spaces open import structured-types.magmas open import structured-types.morphisms-magmas open import structured-types.product-magmas
Idea
Multiplication in a magma M induces by
uncurrying a map
M × M → M, (x , y) ↦ mul-Magma M x y. M is
medial¶
if this map is a morphism from the
product magma: in other words, if the
equality
  (x * u) * (y * v) = (x * y) * (u * v)
is satisfied for all elements x y u v : M.
An H-space is medial if and only if it is commutative; this is the Eckmann-Hilton argument.
Definition
module _ {l : Level} (M : Magma l) where mul-uncurry-Magma : type-Magma M × type-Magma M → type-Magma M mul-uncurry-Magma (x , y) = mul-Magma M x y is-medial-Magma : UU l is-medial-Magma = preserves-mul-Magma (product-Magma M M) M mul-uncurry-Magma medial-Magma : (l : Level) → UU (lsuc l) medial-Magma l = Σ (Magma l) is-medial-Magma module _ {l : Level} (M : medial-Magma l) where magma-medial-Magma : Magma l magma-medial-Magma = pr1 M type-medial-Magma : UU l type-medial-Magma = type-Magma magma-medial-Magma mul-medial-Magma : type-medial-Magma → type-medial-Magma → type-medial-Magma mul-medial-Magma = mul-Magma magma-medial-Magma
Properties
Medial H-spaces are commutative and associative
In traditional set-level mathematics, the carrier type for a magma is assumed to
be a set, in which case being medial is a property of a magma rather than
structure. In the absence of this assumption, there may be several homotopies
witnessing medial-ness of M, and thus the commutators and associators defined
below are not necessarily unique and should be thought of as additional
structure on M, potentially subject to coherence conditions and so on.
module _ {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M)) where commutator-medial-H-Space : (x y : type-H-Space M) → mul-H-Space M x y = mul-H-Space M y x commutator-medial-H-Space x y = equational-reasoning mul-H-Space M x y = ( mul-H-Space M ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , x)) ( mul-uncurry-Magma (magma-H-Space M) (y , unit-H-Space M))) by ap-binary ( mul-H-Space M) ( inv (left-unit-law-mul-H-Space M x)) ( inv (right-unit-law-mul-H-Space M y)) = ( mul-H-Space M ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , y)) ( mul-uncurry-Magma (magma-H-Space M) (x , unit-H-Space M))) by med-M (unit-H-Space M , y) (x , unit-H-Space M) = mul-H-Space M y x by ap-binary ( mul-H-Space M) ( left-unit-law-mul-H-Space M y) ( right-unit-law-mul-H-Space M x) associator-medial-H-Space : ( x y z : type-H-Space M) → mul-H-Space M (mul-H-Space M x y) z = mul-H-Space M x (mul-H-Space M y z) associator-medial-H-Space x y z = equational-reasoning mul-H-Space M (mul-H-Space M x y) z = mul-H-Space M (mul-H-Space M x y) (mul-H-Space M (unit-H-Space M) z) by ap-binary (mul-H-Space M) refl (inv (left-unit-law-mul-H-Space M z)) = mul-H-Space M (mul-H-Space M x (unit-H-Space M)) (mul-H-Space M y z) by med-M (x , unit-H-Space M) (y , z) = mul-H-Space M x (mul-H-Space M y z) by ap-binary (mul-H-Space M) (right-unit-law-mul-H-Space M x) refl
The commutative monoid of a medial H-space
module _ {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M)) where is-commutative-monoid-medial-H-Space : is-commutative-monoid-Magma (magma-H-Space M) pr1 (pr1 is-commutative-monoid-medial-H-Space) = associator-medial-H-Space M med-M pr2 (pr1 is-commutative-monoid-medial-H-Space) = unit-H-Space M , left-unit-law-mul-H-Space M , right-unit-law-mul-H-Space M pr2 is-commutative-monoid-medial-H-Space = commutator-medial-H-Space M med-M
External links
- Medial magma at Wikidata
 - Medial magmas at Wikipedia
 
Recent changes
- 2025-08-03. Garrett Figueroa. Medial magmas (#1461).