Medial magmas

Content created by Garrett Figueroa.

Created on 2025-08-03.
Last modified on 2025-08-03.

module structured-types.medial-magmas where
Imports
open import foundation.action-on-identifications-binary-functions
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import structured-types.h-spaces
open import structured-types.magmas
open import structured-types.morphisms-magmas
open import structured-types.product-magmas

Idea

Multiplication in a magma M induces by uncurrying a map M × M → M, (x , y) ↦ mul-Magma M x y. M is medial if this map is a morphism from the product magma: in other words, if the equality

  (x * u) * (y * v) = (x * y) * (u * v)

is satisfied for all elements x y u v : M.

An H-space is medial if and only if it is commutative; this is the Eckmann-Hilton argument.

Definition

module _
  {l : Level} (M : Magma l)
  where

  mul-uncurry-Magma : type-Magma M × type-Magma M  type-Magma M
  mul-uncurry-Magma (x , y) = mul-Magma M x y

  is-medial-Magma : UU l
  is-medial-Magma = preserves-mul-Magma (product-Magma M M) M mul-uncurry-Magma

medial-Magma : (l : Level)  UU (lsuc l)
medial-Magma l = Σ (Magma l) is-medial-Magma

module _
  {l : Level} (M : medial-Magma l)
  where

  magma-medial-Magma : Magma l
  magma-medial-Magma = pr1 M

  type-medial-Magma : UU l
  type-medial-Magma = type-Magma magma-medial-Magma

  mul-medial-Magma : type-medial-Magma  type-medial-Magma  type-medial-Magma
  mul-medial-Magma = mul-Magma magma-medial-Magma

Properties

Medial H-spaces are commutative and associative

In traditional set-level mathematics, the carrier type for a magma is assumed to be a set, in which case being medial is a property of a magma rather than structure. In the absence of this assumption, there may be several homotopies witnessing medial-ness of M, and thus the commutators and associators defined below are not necessarily unique and should be thought of as additional structure on M, potentially subject to coherence conditions and so on.

module _
  {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M))
  where

  commutator-medial-H-Space :
    (x y : type-H-Space M)  mul-H-Space M x y  mul-H-Space M y x
  commutator-medial-H-Space x y = equational-reasoning
    mul-H-Space M x y
     ( mul-H-Space M
        ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , x))
        ( mul-uncurry-Magma (magma-H-Space M) (y , unit-H-Space M)))
      by
        ap-binary
          ( mul-H-Space M)
          ( inv (left-unit-law-mul-H-Space M x))
          ( inv (right-unit-law-mul-H-Space M y))
     ( mul-H-Space M
        ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , y))
        ( mul-uncurry-Magma (magma-H-Space M) (x , unit-H-Space M)))
      by med-M (unit-H-Space M , y) (x , unit-H-Space M)
     mul-H-Space M y x
      by
        ap-binary
          ( mul-H-Space M)
          ( left-unit-law-mul-H-Space M y)
          ( right-unit-law-mul-H-Space M x)

  associator-medial-H-Space :
    ( x y z : type-H-Space M) 
    mul-H-Space M (mul-H-Space M x y) z  mul-H-Space M x (mul-H-Space M y z)
  associator-medial-H-Space x y z = equational-reasoning
    mul-H-Space M (mul-H-Space M x y) z
     mul-H-Space M (mul-H-Space M x y) (mul-H-Space M (unit-H-Space M) z)
      by ap-binary (mul-H-Space M) refl (inv (left-unit-law-mul-H-Space M z))
     mul-H-Space M (mul-H-Space M x (unit-H-Space M)) (mul-H-Space M y z)
      by med-M (x , unit-H-Space M) (y , z)
     mul-H-Space M x (mul-H-Space M y z)
      by ap-binary (mul-H-Space M) (right-unit-law-mul-H-Space M x) refl

The commutative monoid of a medial H-space

module _
  {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M))
  where

  is-commutative-monoid-medial-H-Space :
    is-commutative-monoid-Magma (magma-H-Space M)
  pr1 (pr1 is-commutative-monoid-medial-H-Space) =
    associator-medial-H-Space M med-M
  pr2 (pr1 is-commutative-monoid-medial-H-Space) =
    unit-H-Space M , left-unit-law-mul-H-Space M , right-unit-law-mul-H-Space M
  pr2 is-commutative-monoid-medial-H-Space = commutator-medial-H-Space M med-M

Recent changes