Medial magmas
Content created by Garrett Figueroa.
Created on 2025-08-03.
Last modified on 2025-08-03.
module structured-types.medial-magmas where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import structured-types.h-spaces open import structured-types.magmas open import structured-types.morphisms-magmas open import structured-types.product-magmas
Idea
Multiplication in a magma M
induces by
uncurrying a map
M × M → M, (x , y) ↦ mul-Magma M x y
. M
is
medial¶
if this map is a morphism from the
product magma: in other words, if the
equality
(x * u) * (y * v) = (x * y) * (u * v)
is satisfied for all elements x y u v : M
.
An H-space is medial if and only if it is commutative; this is the Eckmann-Hilton argument.
Definition
module _ {l : Level} (M : Magma l) where mul-uncurry-Magma : type-Magma M × type-Magma M → type-Magma M mul-uncurry-Magma (x , y) = mul-Magma M x y is-medial-Magma : UU l is-medial-Magma = preserves-mul-Magma (product-Magma M M) M mul-uncurry-Magma medial-Magma : (l : Level) → UU (lsuc l) medial-Magma l = Σ (Magma l) is-medial-Magma module _ {l : Level} (M : medial-Magma l) where magma-medial-Magma : Magma l magma-medial-Magma = pr1 M type-medial-Magma : UU l type-medial-Magma = type-Magma magma-medial-Magma mul-medial-Magma : type-medial-Magma → type-medial-Magma → type-medial-Magma mul-medial-Magma = mul-Magma magma-medial-Magma
Properties
Medial H-spaces are commutative and associative
In traditional set-level mathematics, the carrier type for a magma is assumed to
be a set, in which case being medial is a property of a magma rather than
structure. In the absence of this assumption, there may be several homotopies
witnessing medial-ness of M
, and thus the commutators and associators defined
below are not necessarily unique and should be thought of as additional
structure on M
, potentially subject to coherence conditions and so on.
module _ {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M)) where commutator-medial-H-Space : (x y : type-H-Space M) → mul-H-Space M x y = mul-H-Space M y x commutator-medial-H-Space x y = equational-reasoning mul-H-Space M x y = ( mul-H-Space M ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , x)) ( mul-uncurry-Magma (magma-H-Space M) (y , unit-H-Space M))) by ap-binary ( mul-H-Space M) ( inv (left-unit-law-mul-H-Space M x)) ( inv (right-unit-law-mul-H-Space M y)) = ( mul-H-Space M ( mul-uncurry-Magma (magma-H-Space M) (unit-H-Space M , y)) ( mul-uncurry-Magma (magma-H-Space M) (x , unit-H-Space M))) by med-M (unit-H-Space M , y) (x , unit-H-Space M) = mul-H-Space M y x by ap-binary ( mul-H-Space M) ( left-unit-law-mul-H-Space M y) ( right-unit-law-mul-H-Space M x) associator-medial-H-Space : ( x y z : type-H-Space M) → mul-H-Space M (mul-H-Space M x y) z = mul-H-Space M x (mul-H-Space M y z) associator-medial-H-Space x y z = equational-reasoning mul-H-Space M (mul-H-Space M x y) z = mul-H-Space M (mul-H-Space M x y) (mul-H-Space M (unit-H-Space M) z) by ap-binary (mul-H-Space M) refl (inv (left-unit-law-mul-H-Space M z)) = mul-H-Space M (mul-H-Space M x (unit-H-Space M)) (mul-H-Space M y z) by med-M (x , unit-H-Space M) (y , z) = mul-H-Space M x (mul-H-Space M y z) by ap-binary (mul-H-Space M) (right-unit-law-mul-H-Space M x) refl
The commutative monoid of a medial H-space
module _ {l : Level} (M : H-Space l) (med-M : is-medial-Magma (magma-H-Space M)) where is-commutative-monoid-medial-H-Space : is-commutative-monoid-Magma (magma-H-Space M) pr1 (pr1 is-commutative-monoid-medial-H-Space) = associator-medial-H-Space M med-M pr2 (pr1 is-commutative-monoid-medial-H-Space) = unit-H-Space M , left-unit-law-mul-H-Space M , right-unit-law-mul-H-Space M pr2 is-commutative-monoid-medial-H-Space = commutator-medial-H-Space M med-M
External links
- Medial magma at Wikidata
- Medial magmas at Wikipedia
Recent changes
- 2025-08-03. Garrett Figueroa. Medial magmas (#1461).