Convergent series in real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-27.
Last modified on 2025-12-27.
module functional-analysis.convergent-series-real-banach-spaces where
Imports
open import analysis.convergent-series-complete-metric-abelian-groups open import analysis.convergent-series-metric-abelian-groups open import analysis.convergent-series-real-numbers open import analysis.series-real-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.inhabited-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import functional-analysis.additive-complete-metric-abelian-groups-real-banach-spaces open import functional-analysis.real-banach-spaces open import functional-analysis.series-real-banach-spaces open import linear-algebra.normed-real-vector-spaces open import lists.sequences open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.sums-of-finite-sequences-of-real-numbers open import univalent-combinatorics.standard-finite-types
Idea
A series converges in a real Banach space if its partial sums form a Cauchy sequence.
A slightly modified converse is also true: if a series converges, there exists a modulus making its partial sums a Cauchy sequence.
Definition
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where is-sum-prop-series-ℝ-Banach-Space : type-ℝ-Banach-Space V → Prop l1 is-sum-prop-series-ℝ-Banach-Space = is-sum-prop-series-Metric-Ab σ is-sum-series-ℝ-Banach-Space : type-ℝ-Banach-Space V → UU l1 is-sum-series-ℝ-Banach-Space = is-sum-series-Metric-Ab σ is-convergent-prop-series-ℝ-Banach-Space : Prop (l1 ⊔ l2) is-convergent-prop-series-ℝ-Banach-Space = is-convergent-prop-series-Metric-Ab σ is-convergent-series-ℝ-Banach-Space : UU (l1 ⊔ l2) is-convergent-series-ℝ-Banach-Space = is-convergent-series-Metric-Ab σ convergent-series-ℝ-Banach-Space : {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) → UU (l1 ⊔ l2) convergent-series-ℝ-Banach-Space V = type-subtype (is-convergent-prop-series-ℝ-Banach-Space V)
Properties
If the partial sums of a series form a Cauchy sequence, the series converges
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space : is-cauchy-sequence-Metric-Space ( metric-space-ℝ-Banach-Space V) ( partial-sum-series-ℝ-Banach-Space V σ) → is-convergent-series-ℝ-Banach-Space V σ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space = is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab ( complete-metric-ab-add-ℝ-Banach-Space V) ( σ)
A series in the real Banach space of real numbers converges if and only if its corresponding series of real numbers converges
module _ {l : Level} (σ : sequence (ℝ l)) where is-convergent-real-is-convergent-real-banach-space-ℝ : is-convergent-series-ℝ-Banach-Space ( real-banach-space-ℝ l) ( series-terms-ℝ-Banach-Space (real-banach-space-ℝ l) σ) → is-convergent-series-ℝ (series-terms-ℝ σ) is-convergent-real-is-convergent-real-banach-space-ℝ (lim , is-lim) = ( lim , preserves-limits-sequence-isometry-Metric-Space ( metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l)) ( metric-space-ℝ l) ( id , λ d x y → inv-iff (neighborhood-iff-leq-dist-ℝ d x y)) ( λ n → sum-fin-sequence-ℝ n (σ ∘ nat-Fin n)) ( lim) ( is-lim)) is-convergent-real-banach-space-is-convergent-ℝ : is-convergent-series-ℝ (series-terms-ℝ σ) → is-convergent-series-ℝ-Banach-Space ( real-banach-space-ℝ l) ( series-terms-ℝ-Banach-Space (real-banach-space-ℝ l) σ) is-convergent-real-banach-space-is-convergent-ℝ (lim , is-lim) = ( lim , preserves-limits-sequence-isometry-Metric-Space ( metric-space-ℝ l) ( metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l)) ( id , λ d x y → neighborhood-iff-leq-dist-ℝ d x y) ( λ n → sum-fin-sequence-ℝ n (σ ∘ nat-Fin n)) ( lim) ( is-lim))
If a series converges, there exists a modulus making its partial sums a Cauchy sequence
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where is-cauchy-sequence-partial-sum-is-convergent-series-ℝ-Banach-Space : is-convergent-series-ℝ-Banach-Space V σ → is-inhabited ( is-cauchy-sequence-Metric-Space ( metric-space-ℝ-Banach-Space V) ( partial-sum-series-ℝ-Banach-Space V σ)) is-cauchy-sequence-partial-sum-is-convergent-series-ℝ-Banach-Space (lim , is-lim) = map-is-inhabited ( is-cauchy-has-limit-modulus-sequence-Metric-Space ( metric-space-ℝ-Banach-Space V) ( partial-sum-series-ℝ-Banach-Space V σ) ( lim)) ( is-lim)
Recent changes
- 2025-12-27. Louis Wasserman. Split out functional analysis as its own module (#1766).