Finite preorders
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-01-05.
Last modified on 2024-11-20.
module order-theory.finite-preorders where
Imports
open import elementary-number-theory.natural-numbers open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.decidable-equality open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.mere-equivalences open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.decidable-preorders open import order-theory.decidable-subpreorders open import order-theory.preorders open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.equality-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
We say that a preorder P
is finite if P
has
finitely many elements and the
ordering relation on P
is decidable.
module _ {l1 l2 : Level} (P : Preorder l1 l2) where is-finite-Preorder-Prop : Prop (l1 ⊔ l2) is-finite-Preorder-Prop = product-Prop ( is-finite-Prop (type-Preorder P)) ( is-decidable-leq-prop-Preorder P) is-finite-Preorder : UU (l1 ⊔ l2) is-finite-Preorder = type-Prop is-finite-Preorder-Prop is-prop-is-finite-Preorder : is-prop is-finite-Preorder is-prop-is-finite-Preorder = is-prop-type-Prop is-finite-Preorder-Prop is-finite-type-is-finite-Preorder : is-finite-Preorder → is-finite (type-Preorder P) is-finite-type-is-finite-Preorder = pr1 is-decidable-leq-is-finite-Preorder : is-finite-Preorder → (x y : type-Preorder P) → is-decidable (leq-Preorder P x y) is-decidable-leq-is-finite-Preorder H = pr2 H Preorder-𝔽 : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Preorder-𝔽 l1 l2 = Σ ( 𝔽 l1) ( λ P → Σ ( (x y : type-𝔽 P) → Decidable-Prop l2) ( λ R → ( (x : type-𝔽 P) → type-Decidable-Prop (R x x)) × ( (x y z : type-𝔽 P) → type-Decidable-Prop (R y z) → type-Decidable-Prop (R x y) → type-Decidable-Prop (R x z)))) finite-preorder-is-finite-Preorder : {l1 l2 : Level} (P : Preorder l1 l2) → is-finite-Preorder P → Preorder-𝔽 l1 l2 pr1 (pr1 (finite-preorder-is-finite-Preorder P H)) = type-Preorder P pr2 (pr1 (finite-preorder-is-finite-Preorder P H)) = pr1 H pr1 (pr1 (pr2 (finite-preorder-is-finite-Preorder P H)) x y) = leq-Preorder P x y pr1 (pr2 (pr1 (pr2 (finite-preorder-is-finite-Preorder P H)) x y)) = is-prop-leq-Preorder P x y pr2 (pr2 (pr1 (pr2 (finite-preorder-is-finite-Preorder P H)) x y)) = pr2 H x y pr1 (pr2 (pr2 (finite-preorder-is-finite-Preorder P H))) = refl-leq-Preorder P pr2 (pr2 (pr2 (finite-preorder-is-finite-Preorder P H))) = transitive-leq-Preorder P module _ {l1 l2 : Level} (P : Preorder-𝔽 l1 l2) where finite-type-Preorder-𝔽 : 𝔽 l1 finite-type-Preorder-𝔽 = pr1 P type-Preorder-𝔽 : UU l1 type-Preorder-𝔽 = type-𝔽 finite-type-Preorder-𝔽 is-finite-type-Preorder-𝔽 : is-finite type-Preorder-𝔽 is-finite-type-Preorder-𝔽 = is-finite-type-𝔽 finite-type-Preorder-𝔽 number-of-types-Preorder-𝔽 : ℕ number-of-types-Preorder-𝔽 = number-of-elements-is-finite is-finite-type-Preorder-𝔽 mere-equiv-type-Preorder-𝔽 : mere-equiv (Fin number-of-types-Preorder-𝔽) type-Preorder-𝔽 mere-equiv-type-Preorder-𝔽 = mere-equiv-is-finite is-finite-type-Preorder-𝔽 is-set-type-Preorder-𝔽 : is-set type-Preorder-𝔽 is-set-type-Preorder-𝔽 = is-set-is-finite is-finite-type-Preorder-𝔽 has-decidable-equality-type-Preorder-𝔽 : has-decidable-equality type-Preorder-𝔽 has-decidable-equality-type-Preorder-𝔽 = has-decidable-equality-is-finite is-finite-type-Preorder-𝔽 leq-finite-preorder-Decidable-Prop : (x y : type-Preorder-𝔽) → Decidable-Prop l2 leq-finite-preorder-Decidable-Prop = pr1 (pr2 P) leq-Preorder-𝔽 : (x y : type-Preorder-𝔽) → UU l2 leq-Preorder-𝔽 x y = type-Decidable-Prop (leq-finite-preorder-Decidable-Prop x y) is-decidable-prop-leq-Preorder-𝔽 : (x y : type-Preorder-𝔽) → is-decidable-prop (leq-Preorder-𝔽 x y) is-decidable-prop-leq-Preorder-𝔽 x y = is-decidable-prop-type-Decidable-Prop ( leq-finite-preorder-Decidable-Prop x y) is-decidable-leq-Preorder-𝔽 : (x y : type-Preorder-𝔽) → is-decidable (leq-Preorder-𝔽 x y) is-decidable-leq-Preorder-𝔽 x y = is-decidable-Decidable-Prop (leq-finite-preorder-Decidable-Prop x y) is-prop-leq-Preorder-𝔽 : (x y : type-Preorder-𝔽) → is-prop (leq-Preorder-𝔽 x y) is-prop-leq-Preorder-𝔽 x y = is-prop-type-Decidable-Prop (leq-finite-preorder-Decidable-Prop x y) leq-Preorder-𝔽-Prop : (x y : type-Preorder-𝔽) → Prop l2 pr1 (leq-Preorder-𝔽-Prop x y) = leq-Preorder-𝔽 x y pr2 (leq-Preorder-𝔽-Prop x y) = is-prop-leq-Preorder-𝔽 x y refl-leq-Preorder-𝔽 : (x : type-Preorder-𝔽) → leq-Preorder-𝔽 x x refl-leq-Preorder-𝔽 = pr1 (pr2 (pr2 P)) transitive-leq-Preorder-𝔽 : is-transitive leq-Preorder-𝔽 transitive-leq-Preorder-𝔽 = pr2 (pr2 (pr2 P)) preorder-Preorder-𝔽 : Preorder l1 l2 pr1 preorder-Preorder-𝔽 = type-Preorder-𝔽 pr1 (pr2 preorder-Preorder-𝔽) = leq-Preorder-𝔽-Prop pr1 (pr2 (pr2 preorder-Preorder-𝔽)) = refl-leq-Preorder-𝔽 pr2 (pr2 (pr2 preorder-Preorder-𝔽)) = transitive-leq-Preorder-𝔽 is-finite-preorder-Preorder-𝔽 : is-finite-Preorder preorder-Preorder-𝔽 pr1 is-finite-preorder-Preorder-𝔽 = is-finite-type-Preorder-𝔽 pr2 is-finite-preorder-Preorder-𝔽 = is-decidable-leq-Preorder-𝔽
Decidable subpreorders of finite preorders
module _ {l1 l2 l3 : Level} (P : Preorder-𝔽 l1 l2) (S : type-Preorder-𝔽 P → Decidable-Prop l3) where type-finite-Subpreorder : UU (l1 ⊔ l3) type-finite-Subpreorder = type-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S is-finite-type-finite-Subpreorder : is-finite type-finite-Subpreorder is-finite-type-finite-Subpreorder = is-finite-type-decidable-subtype S (is-finite-type-Preorder-𝔽 P) eq-type-finite-Subpreorder : (x y : type-finite-Subpreorder) → Id (pr1 x) (pr1 y) → Id x y eq-type-finite-Subpreorder = eq-type-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S leq-finite-Subpreorder-Decidable-Prop : (x y : type-finite-Subpreorder) → Decidable-Prop l2 leq-finite-Subpreorder-Decidable-Prop x y = leq-finite-preorder-Decidable-Prop P (pr1 x) (pr1 y) leq-finite-Subpreorder-Prop : (x y : type-finite-Subpreorder) → Prop l2 leq-finite-Subpreorder-Prop = leq-Decidable-Subpreorder-Prop (preorder-Preorder-𝔽 P) S leq-finite-Subpreorder : (x y : type-finite-Subpreorder) → UU l2 leq-finite-Subpreorder = leq-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S is-prop-leq-finite-Subpreorder : (x y : type-finite-Subpreorder) → is-prop (leq-finite-Subpreorder x y) is-prop-leq-finite-Subpreorder = is-prop-leq-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S refl-leq-finite-Subpreorder : (x : type-finite-Subpreorder) → leq-finite-Subpreorder x x refl-leq-finite-Subpreorder = refl-leq-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S transitive-leq-finite-Subpreorder : is-transitive leq-finite-Subpreorder transitive-leq-finite-Subpreorder = transitive-leq-Decidable-Subpreorder (preorder-Preorder-𝔽 P) S module _ {l1 l2 l3 : Level} (P : Preorder-𝔽 l1 l2) (S : type-Preorder-𝔽 P → Decidable-Prop l3) where type-finite-Subpreorder-𝔽 : 𝔽 (l1 ⊔ l3) pr1 type-finite-Subpreorder-𝔽 = type-finite-Subpreorder P S pr2 type-finite-Subpreorder-𝔽 = is-finite-type-finite-Subpreorder P S finite-Subpreorder : Preorder-𝔽 (l1 ⊔ l3) l2 pr1 finite-Subpreorder = type-finite-Subpreorder-𝔽 pr1 (pr2 finite-Subpreorder) = leq-finite-Subpreorder-Decidable-Prop P S pr1 (pr2 (pr2 finite-Subpreorder)) = refl-leq-finite-Subpreorder P S pr2 (pr2 (pr2 finite-Subpreorder)) = transitive-leq-finite-Subpreorder P S
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-10-20. Fredrik Bakke and Egbert Rijke. Order theory from @spcfox’s modal logic (#1205).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-10-16. Fredrik Bakke. The simplex precategory (#845).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).