Homomorphisms of semigroups
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-17.
Last modified on 2024-03-11.
module group-theory.homomorphisms-semigroups where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels open import group-theory.semigroups
Idea
A homomorphism between two semigroups is a map between their underlying types that preserves the binary operation.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where preserves-mul : (μA : A → A → A) (μB : B → B → B) → (A → B) → UU (l1 ⊔ l2) preserves-mul μA μB f = {x y : A} → f (μA x y) = μB (f x) (f y) preserves-mul' : (μA : A → A → A) (μB : B → B → B) → (A → B) → UU (l1 ⊔ l2) preserves-mul' μA μB f = (x y : A) → f (μA x y) = μB (f x) (f y) module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) where preserves-mul-prop-Semigroup : (type-Semigroup G → type-Semigroup H) → Prop (l1 ⊔ l2) preserves-mul-prop-Semigroup f = implicit-Π-Prop ( type-Semigroup G) ( λ x → implicit-Π-Prop ( type-Semigroup G) ( λ y → Id-Prop ( set-Semigroup H) ( f (mul-Semigroup G x y)) ( mul-Semigroup H (f x) (f y)))) preserves-mul-prop-Semigroup' : (type-Semigroup G → type-Semigroup H) → Prop (l1 ⊔ l2) preserves-mul-prop-Semigroup' f = implicit-Π-Prop ( type-Semigroup G) ( λ x → implicit-Π-Prop ( type-Semigroup G) ( λ y → Id-Prop ( set-Semigroup H) ( f (mul-Semigroup' G x y)) ( mul-Semigroup H (f x) (f y)))) preserves-mul-Semigroup : (type-Semigroup G → type-Semigroup H) → UU (l1 ⊔ l2) preserves-mul-Semigroup f = type-Prop (preserves-mul-prop-Semigroup f) preserves-mul-Semigroup' : (type-Semigroup G → type-Semigroup H) → UU (l1 ⊔ l2) preserves-mul-Semigroup' f = type-Prop (preserves-mul-prop-Semigroup' f) is-prop-preserves-mul-Semigroup : (f : type-Semigroup G → type-Semigroup H) → is-prop (preserves-mul-Semigroup f) is-prop-preserves-mul-Semigroup f = is-prop-type-Prop (preserves-mul-prop-Semigroup f) is-prop-preserves-mul-Semigroup' : (f : type-Semigroup G → type-Semigroup H) → is-prop (preserves-mul-Semigroup' f) is-prop-preserves-mul-Semigroup' f = is-prop-type-Prop (preserves-mul-prop-Semigroup' f) hom-Semigroup : UU (l1 ⊔ l2) hom-Semigroup = Σ ( type-Semigroup G → type-Semigroup H) ( preserves-mul-Semigroup) map-hom-Semigroup : hom-Semigroup → type-Semigroup G → type-Semigroup H map-hom-Semigroup f = pr1 f preserves-mul-hom-Semigroup : (f : hom-Semigroup) → preserves-mul-Semigroup (map-hom-Semigroup f) preserves-mul-hom-Semigroup f = pr2 f
Characterizing the identity type of semigroup homomorphisms
htpy-hom-Semigroup : (f g : hom-Semigroup) → UU (l1 ⊔ l2) htpy-hom-Semigroup f g = map-hom-Semigroup f ~ map-hom-Semigroup g refl-htpy-hom-Semigroup : (f : hom-Semigroup) → htpy-hom-Semigroup f f refl-htpy-hom-Semigroup f = refl-htpy htpy-eq-hom-Semigroup : (f g : hom-Semigroup) → Id f g → htpy-hom-Semigroup f g htpy-eq-hom-Semigroup f .f refl = refl-htpy-hom-Semigroup f abstract is-torsorial-htpy-hom-Semigroup : (f : hom-Semigroup) → is-torsorial (htpy-hom-Semigroup f) is-torsorial-htpy-hom-Semigroup f = is-torsorial-Eq-subtype ( is-torsorial-htpy (map-hom-Semigroup f)) ( is-prop-preserves-mul-Semigroup) ( map-hom-Semigroup f) ( refl-htpy) ( preserves-mul-hom-Semigroup f) abstract is-equiv-htpy-eq-hom-Semigroup : (f g : hom-Semigroup) → is-equiv (htpy-eq-hom-Semigroup f g) is-equiv-htpy-eq-hom-Semigroup f = fundamental-theorem-id ( is-torsorial-htpy-hom-Semigroup f) ( htpy-eq-hom-Semigroup f) eq-htpy-hom-Semigroup : {f g : hom-Semigroup} → htpy-hom-Semigroup f g → Id f g eq-htpy-hom-Semigroup {f} {g} = map-inv-is-equiv (is-equiv-htpy-eq-hom-Semigroup f g) is-set-hom-Semigroup : is-set hom-Semigroup is-set-hom-Semigroup f g = is-prop-is-equiv ( is-equiv-htpy-eq-hom-Semigroup f g) ( is-prop-Π ( λ x → is-set-type-Semigroup H ( map-hom-Semigroup f x) ( map-hom-Semigroup g x))) hom-set-Semigroup : Set (l1 ⊔ l2) pr1 hom-set-Semigroup = hom-Semigroup pr2 hom-set-Semigroup = is-set-hom-Semigroup preserves-mul-id-Semigroup : {l : Level} (G : Semigroup l) → preserves-mul-Semigroup G G id preserves-mul-id-Semigroup G = refl
The identity homomorphism of semigroups
id-hom-Semigroup : {l : Level} (G : Semigroup l) → hom-Semigroup G G pr1 (id-hom-Semigroup G) = id pr2 (id-hom-Semigroup G) = preserves-mul-id-Semigroup G
Composition of morphisms of semigroups
module _ {l1 l2 l3 : Level} (G : Semigroup l1) (H : Semigroup l2) (K : Semigroup l3) (g : hom-Semigroup H K) (f : hom-Semigroup G H) where map-comp-hom-Semigroup : type-Semigroup G → type-Semigroup K map-comp-hom-Semigroup = (map-hom-Semigroup H K g) ∘ (map-hom-Semigroup G H f) preserves-mul-comp-hom-Semigroup : preserves-mul-Semigroup G K map-comp-hom-Semigroup preserves-mul-comp-hom-Semigroup = ( ap ( map-hom-Semigroup H K g) ( preserves-mul-hom-Semigroup G H f)) ∙ ( preserves-mul-hom-Semigroup H K g) comp-hom-Semigroup : hom-Semigroup G K pr1 comp-hom-Semigroup = map-comp-hom-Semigroup pr2 comp-hom-Semigroup = preserves-mul-comp-hom-Semigroup
Associativity of composition of homomorphisms of semigroups
module _ {l1 l2 l3 l4 : Level} (G : Semigroup l1) (H : Semigroup l2) (K : Semigroup l3) (L : Semigroup l4) (h : hom-Semigroup K L) (g : hom-Semigroup H K) (f : hom-Semigroup G H) where associative-comp-hom-Semigroup : comp-hom-Semigroup G H L (comp-hom-Semigroup H K L h g) f = comp-hom-Semigroup G K L h (comp-hom-Semigroup G H K g f) associative-comp-hom-Semigroup = eq-htpy-hom-Semigroup G L refl-htpy
The left and right unit laws for composition of homomorphisms of semigroups
left-unit-law-comp-hom-Semigroup : { l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) ( f : hom-Semigroup G H) → Id ( comp-hom-Semigroup G H H (id-hom-Semigroup H) f) f left-unit-law-comp-hom-Semigroup G (pair (pair H is-set-H) (pair μ-H associative-H)) (pair f μ-f) = eq-htpy-hom-Semigroup G ( pair (pair H is-set-H) (pair μ-H associative-H)) ( refl-htpy) right-unit-law-comp-hom-Semigroup : { l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) ( f : hom-Semigroup G H) → Id ( comp-hom-Semigroup G G H f (id-hom-Semigroup G)) f right-unit-law-comp-hom-Semigroup (pair (pair G is-set-G) (pair μ-G associative-G)) H (pair f μ-f) = eq-htpy-hom-Semigroup ( pair (pair G is-set-G) (pair μ-G associative-G)) H refl-htpy
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-01-11. Fredrik Bakke. Rename
is-prop-Π'
tois-prop-implicit-Π
andΠ-Prop'
toimplicit-Π-Prop
(#997). - 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).