The W-type of the type of propositions

Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.

Created on 2023-01-26.
Last modified on 2023-03-13.

module trees.w-type-of-propositions where
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.propositional-extensionality
open import foundation.propositions
open import foundation.sets
open import foundation.unit-type
open import foundation.universe-levels

open import trees.extensional-w-types
open import trees.w-types


The W-type of the type of propositions is defined using the type of propositions and the canonical type family over it.


𝕎-Prop : (l : Level)  UU (lsuc l)
𝕎-Prop l = 𝕎 (Prop l) type-Prop

zero-𝕎-Prop : {l : Level}  𝕎-Prop l
zero-𝕎-Prop {l} = constant-𝕎 (raise-empty-Prop l) is-empty-raise-empty

succ-𝕎-Prop : {l : Level}  𝕎-Prop l  𝕎-Prop l
succ-𝕎-Prop {l} P = tree-𝕎 (raise-unit-Prop l)  x  P)

Standard subfinite types(?)

standard-subfinite-type : {l : Level}  𝕎-Prop l  UU l
standard-subfinite-type (tree-𝕎 P α) =
  Σ (type-Prop P)  p  standard-subfinite-type (α p)) + type-Prop P


𝕎-Prop is extensional

is-extensional-𝕎-Prop : {l : Level}  is-extensional-𝕎 (Prop l) type-Prop
is-extensional-𝕎-Prop = is-extensional-is-univalent-𝕎 is-univalent-type-Prop

𝕎-Prop is a set

is-set-𝕎-Prop : {l : Level}  is-set (𝕎-Prop l)
is-set-𝕎-Prop = is-set-𝕎 is-set-type-Prop

Recent changes