Order preserving maps between total orders

Content created by Louis Wasserman.

Created on 2025-10-17.
Last modified on 2025-10-17.

module order-theory.order-preserving-maps-total-orders where
Imports
open import foundation.action-on-identifications-functions
open import foundation.disjunction
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.order-preserving-maps-posets
open import order-theory.total-orders

Idea

A map f : P → Q between the underlying types of two total orders is said to be order preserving if x ≤ y in P implies f x ≤ f y in Q.

Definition

Order preserving maps

module _
  {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4)
  where

  preserves-order-prop-Total-Order :
    (type-Total-Order P  type-Total-Order Q)  Prop (l1  l2  l4)
  preserves-order-prop-Total-Order =
    preserves-order-prop-Poset (poset-Total-Order P) (poset-Total-Order Q)

  preserves-order-Total-Order :
    (type-Total-Order P  type-Total-Order Q)  UU (l1  l2  l4)
  preserves-order-Total-Order =
    preserves-order-Poset (poset-Total-Order P) (poset-Total-Order Q)

  is-prop-preserves-order-Total-Order :
    (f : type-Total-Order P  type-Total-Order Q) 
    is-prop (preserves-order-Total-Order f)
  is-prop-preserves-order-Total-Order =
    is-prop-preserves-order-Poset (poset-Total-Order P) (poset-Total-Order Q)

  hom-set-Total-Order : Set (l1  l2  l3  l4)
  hom-set-Total-Order =
    set-subset
      ( function-Set (type-Total-Order P) (set-Total-Order Q))
      ( preserves-order-prop-Total-Order)

  hom-Total-Order : UU (l1  l2  l3  l4)
  hom-Total-Order = type-Set hom-set-Total-Order

  map-hom-Total-Order :
    hom-Total-Order  type-Total-Order P  type-Total-Order Q
  map-hom-Total-Order =
    map-hom-Poset (poset-Total-Order P) (poset-Total-Order Q)

  preserves-order-hom-Total-Order :
    (f : hom-Total-Order)  preserves-order-Total-Order (map-hom-Total-Order f)
  preserves-order-hom-Total-Order =
    preserves-order-hom-Poset (poset-Total-Order P) (poset-Total-Order Q)

Properties

Order-preserving maps distribute over the minimum operation

module _
  {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4)
  (f : hom-Total-Order P Q)
  where

  abstract
    distributive-map-hom-min-Total-Order :
      (x y : type-Total-Order P) 
      map-hom-Total-Order P Q f (min-Total-Order P x y) 
      min-Total-Order Q
        ( map-hom-Total-Order P Q f x)
        ( map-hom-Total-Order P Q f y)
    distributive-map-hom-min-Total-Order x y =
      elim-disjunction
        ( Id-Prop
          ( set-Total-Order Q)
          ( map-hom-Total-Order P Q f (min-Total-Order P x y))
          ( min-Total-Order Q
            ( map-hom-Total-Order P Q f x)
            ( map-hom-Total-Order P Q f y)))
        ( λ x≤y 
          equational-reasoning
            map-hom-Total-Order P Q f (min-Total-Order P x y)
             map-hom-Total-Order P Q f x
              by
                ap
                  ( map-hom-Total-Order P Q f)
                  ( left-leq-right-min-Total-Order P x y x≤y)
            
              min-Total-Order Q
                ( map-hom-Total-Order P Q f x)
                ( map-hom-Total-Order P Q f y)
              by
                inv
                  ( left-leq-right-min-Total-Order Q _ _
                    ( preserves-order-hom-Total-Order P Q f x y x≤y)))
        ( λ y≤x 
          equational-reasoning
            map-hom-Total-Order P Q f (min-Total-Order P x y)
             map-hom-Total-Order P Q f y
              by
                ap
                  ( map-hom-Total-Order P Q f)
                  ( right-leq-left-min-Total-Order P x y y≤x)
            
              min-Total-Order Q
                ( map-hom-Total-Order P Q f x)
                ( map-hom-Total-Order P Q f y)
              by
                inv
                  ( right-leq-left-min-Total-Order Q _ _
                    ( preserves-order-hom-Total-Order P Q f y x y≤x)))
        ( is-total-Total-Order P x y)

Order-preserving maps distribute over the maximum operation

module _
  {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4)
  (f : hom-Total-Order P Q)
  where

  abstract
    distributive-map-hom-max-Total-Order :
      (x y : type-Total-Order P) 
      map-hom-Total-Order P Q f (max-Total-Order P x y) 
      max-Total-Order Q
        ( map-hom-Total-Order P Q f x)
        ( map-hom-Total-Order P Q f y)
    distributive-map-hom-max-Total-Order x y =
      elim-disjunction
        ( Id-Prop
          ( set-Total-Order Q)
          ( map-hom-Total-Order P Q f (max-Total-Order P x y))
          ( max-Total-Order Q
            ( map-hom-Total-Order P Q f x)
            ( map-hom-Total-Order P Q f y)))
        ( λ x≤y 
          equational-reasoning
            map-hom-Total-Order P Q f (max-Total-Order P x y)
             map-hom-Total-Order P Q f y
              by
                ap
                  ( map-hom-Total-Order P Q f)
                  ( left-leq-right-max-Total-Order P x y x≤y)
            
              max-Total-Order Q
                ( map-hom-Total-Order P Q f x)
                ( map-hom-Total-Order P Q f y)
              by
                inv
                  ( left-leq-right-max-Total-Order Q _ _
                    ( preserves-order-hom-Total-Order P Q f x y x≤y)))
        ( λ y≤x 
          equational-reasoning
            map-hom-Total-Order P Q f (max-Total-Order P x y)
             map-hom-Total-Order P Q f x
              by
                ap
                  ( map-hom-Total-Order P Q f)
                  ( right-leq-left-max-Total-Order P x y y≤x)
            
              max-Total-Order Q
                ( map-hom-Total-Order P Q f x)
                ( map-hom-Total-Order P Q f y)
              by
                inv
                  ( right-leq-left-max-Total-Order Q _ _
                    ( preserves-order-hom-Total-Order P Q f y x y≤x)))
        ( is-total-Total-Order P x y)

Recent changes