Order preserving maps between total orders
Content created by Louis Wasserman.
Created on 2025-10-17.
Last modified on 2025-10-17.
module order-theory.order-preserving-maps-total-orders where
Imports
open import foundation.action-on-identifications-functions open import foundation.disjunction open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import order-theory.order-preserving-maps-posets open import order-theory.total-orders
Idea
A map f : P → Q
between the underlying types of two
total orders is said to be
order preserving¶
if x ≤ y
in P
implies f x ≤ f y
in Q
.
Definition
Order preserving maps
module _ {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4) where preserves-order-prop-Total-Order : (type-Total-Order P → type-Total-Order Q) → Prop (l1 ⊔ l2 ⊔ l4) preserves-order-prop-Total-Order = preserves-order-prop-Poset (poset-Total-Order P) (poset-Total-Order Q) preserves-order-Total-Order : (type-Total-Order P → type-Total-Order Q) → UU (l1 ⊔ l2 ⊔ l4) preserves-order-Total-Order = preserves-order-Poset (poset-Total-Order P) (poset-Total-Order Q) is-prop-preserves-order-Total-Order : (f : type-Total-Order P → type-Total-Order Q) → is-prop (preserves-order-Total-Order f) is-prop-preserves-order-Total-Order = is-prop-preserves-order-Poset (poset-Total-Order P) (poset-Total-Order Q) hom-set-Total-Order : Set (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-set-Total-Order = set-subset ( function-Set (type-Total-Order P) (set-Total-Order Q)) ( preserves-order-prop-Total-Order) hom-Total-Order : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-Total-Order = type-Set hom-set-Total-Order map-hom-Total-Order : hom-Total-Order → type-Total-Order P → type-Total-Order Q map-hom-Total-Order = map-hom-Poset (poset-Total-Order P) (poset-Total-Order Q) preserves-order-hom-Total-Order : (f : hom-Total-Order) → preserves-order-Total-Order (map-hom-Total-Order f) preserves-order-hom-Total-Order = preserves-order-hom-Poset (poset-Total-Order P) (poset-Total-Order Q)
Properties
Order-preserving maps distribute over the minimum operation
module _ {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4) (f : hom-Total-Order P Q) where abstract distributive-map-hom-min-Total-Order : (x y : type-Total-Order P) → map-hom-Total-Order P Q f (min-Total-Order P x y) = min-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) distributive-map-hom-min-Total-Order x y = elim-disjunction ( Id-Prop ( set-Total-Order Q) ( map-hom-Total-Order P Q f (min-Total-Order P x y)) ( min-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y))) ( λ x≤y → equational-reasoning map-hom-Total-Order P Q f (min-Total-Order P x y) = map-hom-Total-Order P Q f x by ap ( map-hom-Total-Order P Q f) ( left-leq-right-min-Total-Order P x y x≤y) = min-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) by inv ( left-leq-right-min-Total-Order Q _ _ ( preserves-order-hom-Total-Order P Q f x y x≤y))) ( λ y≤x → equational-reasoning map-hom-Total-Order P Q f (min-Total-Order P x y) = map-hom-Total-Order P Q f y by ap ( map-hom-Total-Order P Q f) ( right-leq-left-min-Total-Order P x y y≤x) = min-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) by inv ( right-leq-left-min-Total-Order Q _ _ ( preserves-order-hom-Total-Order P Q f y x y≤x))) ( is-total-Total-Order P x y)
Order-preserving maps distribute over the maximum operation
module _ {l1 l2 l3 l4 : Level} (P : Total-Order l1 l2) (Q : Total-Order l3 l4) (f : hom-Total-Order P Q) where abstract distributive-map-hom-max-Total-Order : (x y : type-Total-Order P) → map-hom-Total-Order P Q f (max-Total-Order P x y) = max-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) distributive-map-hom-max-Total-Order x y = elim-disjunction ( Id-Prop ( set-Total-Order Q) ( map-hom-Total-Order P Q f (max-Total-Order P x y)) ( max-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y))) ( λ x≤y → equational-reasoning map-hom-Total-Order P Q f (max-Total-Order P x y) = map-hom-Total-Order P Q f y by ap ( map-hom-Total-Order P Q f) ( left-leq-right-max-Total-Order P x y x≤y) = max-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) by inv ( left-leq-right-max-Total-Order Q _ _ ( preserves-order-hom-Total-Order P Q f x y x≤y))) ( λ y≤x → equational-reasoning map-hom-Total-Order P Q f (max-Total-Order P x y) = map-hom-Total-Order P Q f x by ap ( map-hom-Total-Order P Q f) ( right-leq-left-max-Total-Order P x y y≤x) = max-Total-Order Q ( map-hom-Total-Order P Q f x) ( map-hom-Total-Order P Q f y) by inv ( right-leq-left-max-Total-Order Q _ _ ( preserves-order-hom-Total-Order P Q f y x y≤x))) ( is-total-Total-Order P x y)
External links
- Increasing function at Wikidata
Recent changes
- 2025-10-17. Louis Wasserman. Reorganize signed arithmetic on rational numbers (#1582).