Sections of dependent globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.sections-dependent-globular-types where
Imports
open import foundation.universe-levels open import globular-types.dependent-globular-types open import globular-types.globular-types
Idea
Consider a dependent globular type
H
over a globular type G
. A
section¶
f
of H
consists of
s₀ : (x : G₀) → H₀ x
s' : {x y : G₀} (y : H₀ x) (y' : H₀ x') → section (H' y y').
Definitions
Sections of dependent globular types
record section-Dependent-Globular-Type {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field 0-cell-section-Dependent-Globular-Type : (x : 0-cell-Globular-Type G) → 0-cell-Dependent-Globular-Type H x field 1-cell-section-section-Dependent-Globular-Type : {x x' : 0-cell-Globular-Type G} → section-Dependent-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H ( 0-cell-section-Dependent-Globular-Type x) ( 0-cell-section-Dependent-Globular-Type x')) open section-Dependent-Globular-Type public module _ {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) (s : section-Dependent-Globular-Type H) where 1-cell-section-Dependent-Globular-Type : {x x' : 0-cell-Globular-Type G} (f : 1-cell-Globular-Type G x x') → 1-cell-Dependent-Globular-Type H ( 0-cell-section-Dependent-Globular-Type s x) ( 0-cell-section-Dependent-Globular-Type s x') ( f) 1-cell-section-Dependent-Globular-Type = 0-cell-section-Dependent-Globular-Type ( 1-cell-section-section-Dependent-Globular-Type s)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).