Inequality on the positive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module elementary-number-theory.inequality-positive-rational-numbers where
Imports
open import elementary-number-theory.decidable-total-order-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels open import order-theory.decidable-posets open import order-theory.decidable-total-orders open import order-theory.posets open import order-theory.preorders open import order-theory.total-orders
Idea
The standard ordering¶ on the positive rational numbers is inherited from the standard ordering on rational numbers.
Definition
decidable-total-order-ℚ⁺ : Decidable-Total-Order lzero lzero decidable-total-order-ℚ⁺ = decidable-total-order-Decidable-Total-Suborder ℚ-Decidable-Total-Order is-positive-prop-ℚ poset-ℚ⁺ : Poset lzero lzero poset-ℚ⁺ = poset-Decidable-Total-Order decidable-total-order-ℚ⁺ preorder-ℚ⁺ : Preorder lzero lzero preorder-ℚ⁺ = preorder-Poset poset-ℚ⁺ leq-prop-ℚ⁺ : ℚ⁺ → ℚ⁺ → Prop lzero leq-prop-ℚ⁺ = leq-prop-Poset poset-ℚ⁺ leq-ℚ⁺ : ℚ⁺ → ℚ⁺ → UU lzero leq-ℚ⁺ = leq-Poset poset-ℚ⁺ is-prop-leq-ℚ⁺ : (x y : ℚ⁺) → is-prop (leq-ℚ⁺ x y) is-prop-leq-ℚ⁺ x y = is-prop-type-Prop (leq-prop-ℚ⁺ x y)
Properties
Inequality on the positive rational numbers is total
is-total-leq-ℚ⁺ : is-total-Poset poset-ℚ⁺ is-total-leq-ℚ⁺ = is-total-poset-Decidable-Total-Order decidable-total-order-ℚ⁺
Inequality on the positive rational numbers is decidable
is-decidable-leq-ℚ⁺ : is-decidable-leq-Poset poset-ℚ⁺ is-decidable-leq-ℚ⁺ = is-decidable-poset-Decidable-Total-Order decidable-total-order-ℚ⁺
Inequality on the positive rational numbers is a partial order
refl-leq-ℚ⁺ : is-reflexive leq-ℚ⁺ refl-leq-ℚ⁺ = refl-leq-Poset poset-ℚ⁺ transitive-leq-ℚ⁺ : is-transitive leq-ℚ⁺ transitive-leq-ℚ⁺ = transitive-leq-Poset poset-ℚ⁺ antisymmetric-leq-ℚ⁺ : is-antisymmetric leq-ℚ⁺ antisymmetric-leq-ℚ⁺ = antisymmetric-leq-Poset poset-ℚ⁺
Recent changes
- 2025-10-04. Louis Wasserman. Split out operations on positive rational numbers (#1562).