Multiples of elements in abelian groups
Content created by Egbert Rijke, Fredrik Bakke, Louis Wasserman and Gregor Perčič.
Created on 2023-08-21.
Last modified on 2025-10-17.
module group-theory.multiples-of-elements-abelian-groups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.powers-of-elements-groups
Idea
The
multiplication¶
operation on an abelian group is the map
n x ↦ n · x, which is defined by
iteratively adding x with itself n
times. This file describes this operation where n ranges over the
natural numbers.
Definition
Natural number multiples of abelian group elements
module _ {l : Level} (A : Ab l) where multiple-Ab : ℕ → type-Ab A → type-Ab A multiple-Ab = power-Group (group-Ab A)
The predicate of being a natural multiple of an element in an abelian group
We say that an element y is a multiple of an element x if there
exists a number n such that
nx = y.
module _ {l : Level} (A : Ab l) where is-multiple-of-element-prop-Ab : (x y : type-Ab A) → Prop l is-multiple-of-element-prop-Ab = is-power-of-element-prop-Group (group-Ab A) is-multiple-of-element-Ab : (x y : type-Ab A) → UU l is-multiple-of-element-Ab = is-power-of-element-Group (group-Ab A) is-prop-is-multiple-of-element-Ab : (x y : type-Ab A) → is-prop (is-multiple-of-element-Ab x y) is-prop-is-multiple-of-element-Ab = is-prop-is-power-of-element-Group (group-Ab A)
Properties
n · 0 = 0
module _ {l : Level} (A : Ab l) where multiple-zero-Ab : (n : ℕ) → multiple-Ab A n (zero-Ab A) = zero-Ab A multiple-zero-Ab = power-unit-Group (group-Ab A)
(n + 1) · x = n · x + x
module _ {l : Level} (A : Ab l) where multiple-succ-Ab : (n : ℕ) (x : type-Ab A) → multiple-Ab A (succ-ℕ n) x = add-Ab A (multiple-Ab A n x) x multiple-succ-Ab = power-succ-Group (group-Ab A)
(n + 1) · x = x + n · x
module _ {l : Level} (A : Ab l) where multiple-succ-Ab' : (n : ℕ) (x : type-Ab A) → multiple-Ab A (succ-ℕ n) x = add-Ab A x (multiple-Ab A n x) multiple-succ-Ab' = power-succ-Group' (group-Ab A)
Multiples by sums of natural numbers are sums of multiples
module _ {l : Level} (A : Ab l) where right-distributive-multiple-add-Ab : (m n : ℕ) {x : type-Ab A} → multiple-Ab A (m +ℕ n) x = add-Ab A (multiple-Ab A m x) (multiple-Ab A n x) right-distributive-multiple-add-Ab = distributive-power-add-Group (group-Ab A)
Multiples distribute over the sum of x and y
module _ {l : Level} (A : Ab l) where left-distributive-multiple-add-Ab : (n : ℕ) {x y : type-Ab A} → multiple-Ab A n (add-Ab A x y) = add-Ab A (multiple-Ab A n x) (multiple-Ab A n y) left-distributive-multiple-add-Ab n = distributive-power-mul-Group (group-Ab A) n (commutative-add-Ab A _ _)
Multiples by products of natural numbers are iterated multiples
module _ {l : Level} (A : Ab l) where multiple-mul-Ab : (m n : ℕ) {x : type-Ab A} → multiple-Ab A (m *ℕ n) x = multiple-Ab A n (multiple-Ab A m x) multiple-mul-Ab = power-mul-Group (group-Ab A)
See also
Recent changes
- 2025-10-17. Louis Wasserman. Large abelian groups and commutative monoids (#1602).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).