Quotients of abelian groups
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Daniel Gratzer, Elisabeth Stenholm, Julian KG, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-03-08.
Last modified on 2023-11-27.
{-# OPTIONS --lossy-unification #-} module group-theory.quotients-abelian-groups where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-functoriality-set-quotients open import foundation.dependent-pair-types open import foundation.effective-maps-equivalence-relations open import foundation.equivalences open import foundation.functoriality-set-quotients open import foundation.identity-types open import foundation.propositions open import foundation.reflecting-maps-equivalence-relations open import foundation.set-quotients open import foundation.sets open import foundation.surjective-maps open import foundation.universal-property-set-quotients open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.homomorphisms-abelian-groups open import group-theory.nullifying-group-homomorphisms open import group-theory.quotient-groups open import group-theory.semigroups open import group-theory.subgroups-abelian-groups
Idea
Given a subgroup B
of an abelian group A
, the quotient group is an abelian
group A/B
equipped with a group homomorphism q : A → A/B
such that
H ⊆ ker q
, and such that q
satisfies the universal abelian group with the
property that any group homomorphism f : A → C
such that B ⊆ ker f
extends
uniquely along q
to a group homomorphism A/B → C
.
Definitions
Group homomorphisms that nullify a subgroup, i.e., that contain a subgroup in their kernel
module _ {l1 l2 l3 : Level} (A : Ab l1) (B : Ab l2) where nullifies-subgroup-prop-hom-Ab : hom-Ab A B → Subgroup-Ab l3 A → Prop (l1 ⊔ l2 ⊔ l3) nullifies-subgroup-prop-hom-Ab f H = nullifies-normal-subgroup-prop-hom-Group ( group-Ab A) ( group-Ab B) ( f) ( normal-subgroup-Subgroup-Ab A H) nullifies-normal-subgroup-hom-Ab : hom-Ab A B → Subgroup-Ab l3 A → UU (l1 ⊔ l2 ⊔ l3) nullifies-normal-subgroup-hom-Ab f H = nullifies-normal-subgroup-hom-Group ( group-Ab A) ( group-Ab B) ( f) ( normal-subgroup-Subgroup-Ab A H) nullifying-hom-Ab : Subgroup-Ab l3 A → UU (l1 ⊔ l2 ⊔ l3) nullifying-hom-Ab H = nullifying-hom-Group ( group-Ab A) ( group-Ab B) ( normal-subgroup-Subgroup-Ab A H) hom-nullifying-hom-Ab : (H : Subgroup-Ab l3 A) → nullifying-hom-Ab H → hom-Ab A B hom-nullifying-hom-Ab H = hom-nullifying-hom-Group ( group-Ab A) ( group-Ab B) ( normal-subgroup-Subgroup-Ab A H) nullifies-subgroup-nullifying-hom-Ab : (H : Subgroup-Ab l3 A) (f : nullifying-hom-Ab H) → nullifies-normal-subgroup-hom-Ab ( hom-nullifying-hom-Ab H f) H nullifies-subgroup-nullifying-hom-Ab H = nullifies-normal-subgroup-nullifying-hom-Group ( group-Ab A) ( group-Ab B) ( normal-subgroup-Subgroup-Ab A H)
The universal property of quotient groups
precomp-nullifying-hom-Ab : {l1 l2 l3 l4 : Level} (A : Ab l1) (H : Subgroup-Ab l2 A) (B : Ab l3) (f : nullifying-hom-Ab A B H) (C : Ab l4) → hom-Ab B C → nullifying-hom-Ab A C H precomp-nullifying-hom-Ab A H B f C = precomp-nullifying-hom-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) ( group-Ab B) ( f) ( group-Ab C) universal-property-quotient-Ab : {l1 l2 l3 : Level} (l : Level) (A : Ab l1) (H : Subgroup-Ab l2 A) (B : Ab l3) (q : nullifying-hom-Ab A B H) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l) universal-property-quotient-Ab l A H B q = (C : Ab l) → is-equiv (precomp-nullifying-hom-Ab A H B q C)
The quotient group
The quotient map and the underlying set of the quotient group
module _ {l1 l2 : Level} (A : Ab l1) (H : Subgroup-Ab l2 A) where set-quotient-Ab : Set (l1 ⊔ l2) set-quotient-Ab = quotient-Set (equivalence-relation-congruence-Subgroup-Ab A H) type-quotient-Ab : UU (l1 ⊔ l2) type-quotient-Ab = set-quotient (equivalence-relation-congruence-Subgroup-Ab A H) is-set-type-quotient-Ab : is-set type-quotient-Ab is-set-type-quotient-Ab = is-set-set-quotient (equivalence-relation-congruence-Subgroup-Ab A H) map-quotient-hom-Ab : type-Ab A → type-quotient-Ab map-quotient-hom-Ab = quotient-map (equivalence-relation-congruence-Subgroup-Ab A H) is-surjective-map-quotient-hom-Ab : is-surjective map-quotient-hom-Ab is-surjective-map-quotient-hom-Ab = is-surjective-quotient-map (equivalence-relation-congruence-Subgroup-Ab A H) is-effective-map-quotient-hom-Ab : is-effective ( equivalence-relation-congruence-Subgroup-Ab A H) ( map-quotient-hom-Ab) is-effective-map-quotient-hom-Ab = is-effective-quotient-map (equivalence-relation-congruence-Subgroup-Ab A H) apply-effectiveness-map-quotient-hom-Ab : {x y : type-Ab A} → map-quotient-hom-Ab x = map-quotient-hom-Ab y → sim-congruence-Subgroup-Ab A H x y apply-effectiveness-map-quotient-hom-Ab = apply-effectiveness-quotient-map ( equivalence-relation-congruence-Subgroup-Ab A H) apply-effectiveness-map-quotient-hom-Ab' : {x y : type-Ab A} → sim-congruence-Subgroup-Ab A H x y → map-quotient-hom-Ab x = map-quotient-hom-Ab y apply-effectiveness-map-quotient-hom-Ab' = apply-effectiveness-quotient-map' ( equivalence-relation-congruence-Subgroup-Ab A H) reflecting-map-quotient-hom-Ab : reflecting-map-equivalence-relation ( equivalence-relation-congruence-Subgroup-Ab A H) ( type-quotient-Ab) reflecting-map-quotient-hom-Ab = reflecting-map-quotient-map ( equivalence-relation-congruence-Subgroup-Ab A H) is-set-quotient-set-quotient-Ab : is-set-quotient ( equivalence-relation-congruence-Subgroup-Ab A H) ( set-quotient-Ab) ( reflecting-map-quotient-hom-Ab) is-set-quotient-set-quotient-Ab = is-set-quotient-set-quotient ( equivalence-relation-congruence-Subgroup-Ab A H)
The group structure on the quotient group
zero-quotient-Ab : type-quotient-Ab zero-quotient-Ab = map-quotient-hom-Ab (zero-Ab A) binary-hom-add-quotient-Ab : binary-hom-equivalence-relation ( equivalence-relation-congruence-Subgroup-Ab A H) ( equivalence-relation-congruence-Subgroup-Ab A H) ( equivalence-relation-congruence-Subgroup-Ab A H) binary-hom-add-quotient-Ab = binary-hom-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) add-quotient-Ab : (x y : type-quotient-Ab) → type-quotient-Ab add-quotient-Ab = mul-quotient-Group (group-Ab A) (normal-subgroup-Subgroup-Ab A H) add-quotient-Ab' : (x y : type-quotient-Ab) → type-quotient-Ab add-quotient-Ab' = mul-quotient-Group' (group-Ab A) (normal-subgroup-Subgroup-Ab A H) compute-add-quotient-Ab : (x y : type-Ab A) → add-quotient-Ab ( map-quotient-hom-Ab x) ( map-quotient-hom-Ab y) = map-quotient-hom-Ab (add-Ab A x y) compute-add-quotient-Ab = compute-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) hom-neg-quotient-Ab : hom-equivalence-relation ( equivalence-relation-congruence-Subgroup-Ab A H) ( equivalence-relation-congruence-Subgroup-Ab A H) hom-neg-quotient-Ab = hom-inv-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) neg-quotient-Ab : type-quotient-Ab → type-quotient-Ab neg-quotient-Ab = inv-quotient-Group (group-Ab A) (normal-subgroup-Subgroup-Ab A H) compute-neg-quotient-Ab : (x : type-Ab A) → neg-quotient-Ab (map-quotient-hom-Ab x) = map-quotient-hom-Ab (neg-Ab A x) compute-neg-quotient-Ab = compute-inv-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) left-unit-law-add-quotient-Ab : (x : type-quotient-Ab) → add-quotient-Ab zero-quotient-Ab x = x left-unit-law-add-quotient-Ab = left-unit-law-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) right-unit-law-add-quotient-Ab : (x : type-quotient-Ab) → add-quotient-Ab x zero-quotient-Ab = x right-unit-law-add-quotient-Ab = right-unit-law-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) associative-add-quotient-Ab : (x y z : type-quotient-Ab) → ( add-quotient-Ab (add-quotient-Ab x y) z) = ( add-quotient-Ab x (add-quotient-Ab y z)) associative-add-quotient-Ab = associative-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) left-inverse-law-add-quotient-Ab : (x : type-quotient-Ab) → add-quotient-Ab (neg-quotient-Ab x) x = zero-quotient-Ab left-inverse-law-add-quotient-Ab = left-inverse-law-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) right-inverse-law-add-quotient-Ab : (x : type-quotient-Ab) → add-quotient-Ab x (neg-quotient-Ab x) = zero-quotient-Ab right-inverse-law-add-quotient-Ab = right-inverse-law-mul-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) commutative-add-quotient-Ab : (x y : type-quotient-Ab) → add-quotient-Ab x y = add-quotient-Ab y x commutative-add-quotient-Ab = double-induction-set-quotient' ( equivalence-relation-congruence-Subgroup-Ab A H) ( λ x y → Id-Prop ( set-quotient-Ab) ( add-quotient-Ab x y) ( add-quotient-Ab y x)) ( λ x y → ( compute-add-quotient-Ab x y) ∙ ( ap map-quotient-hom-Ab (commutative-add-Ab A x y)) ∙ ( inv (compute-add-quotient-Ab y x))) semigroup-quotient-Ab : Semigroup (l1 ⊔ l2) semigroup-quotient-Ab = semigroup-quotient-Group ( group-Ab A) ( normal-subgroup-Subgroup-Ab A H) group-quotient-Ab : Group (l1 ⊔ l2) group-quotient-Ab = quotient-Group (group-Ab A) (normal-subgroup-Subgroup-Ab A H) quotient-Ab : Ab (l1 ⊔ l2) pr1 quotient-Ab = group-quotient-Ab pr2 quotient-Ab = commutative-add-quotient-Ab
Recent changes
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).