Subtypes of descent data for the circle

Content created by Fredrik Bakke, Egbert Rijke and Vojtěch Štěpančík.

Created on 2023-08-28.
Last modified on 2024-04-25.

module synthetic-homotopy-theory.descent-circle-subtypes where
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels

open import synthetic-homotopy-theory.dependent-descent-circle
open import synthetic-homotopy-theory.descent-circle
open import synthetic-homotopy-theory.descent-circle-dependent-pair-types
open import synthetic-homotopy-theory.free-loops
open import synthetic-homotopy-theory.sections-descent-circle
open import synthetic-homotopy-theory.universal-property-circle

Idea

Given a family A : 𝕊¹ → U over the circle and a family B : (t : 𝕊¹) → (A t) → U over A with corresponding descent data (X, e) and dependent descent data (R, k), where R is a subtype of X, we get that dependent functions of type (t : 𝕊¹) → Σ (A t) (B t) are exactly the fixpoints of e which belong to R.

Properties

Characterization of sections of families of subtypes

module _
  { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S)
  ( A : family-with-descent-data-circle l l2)
  ( B : double-family-with-dependent-descent-data-circle l A l3)
  ( is-subtype-B :
    ( t : S) 
    is-subtype
      ( double-family-double-family-with-dependent-descent-data-circle A B t))
  where

  subtype-descent-data-circle-subtype :
    subtype l3 (type-family-with-descent-data-circle A)
  pr1 (subtype-descent-data-circle-subtype x) =
    type-double-family-with-dependent-descent-data-circle A B x
  pr2 (subtype-descent-data-circle-subtype x) =
    is-prop-equiv
      ( equiv-double-family-with-dependent-descent-data-circle A B x)
      ( is-subtype-B
        ( base-free-loop l)
        ( map-equiv-family-with-descent-data-circle A x))

  equiv-fixpoint-descent-data-circle-subtype-fixpoint-in-subtype :
    fixpoint-descent-data-circle
      ( descent-data-family-with-descent-data-circle
        ( family-with-descent-data-circle-dependent-pair-type l A B)) 
    ( Σ ( fixpoint-descent-data-circle
          ( descent-data-family-with-descent-data-circle A))
        ( λ x  is-in-subtype subtype-descent-data-circle-subtype (pr1 x)))
  equiv-fixpoint-descent-data-circle-subtype-fixpoint-in-subtype =
    equivalence-reasoning
    fixpoint-descent-data-circle
      ( descent-data-family-with-descent-data-circle
        ( family-with-descent-data-circle-dependent-pair-type l A B))
     Σ ( type-family-with-descent-data-circle A)
        ( λ x 
          Σ ( type-double-family-with-dependent-descent-data-circle A B x)
            ( λ r 
              map-Σ
                ( type-double-family-with-dependent-descent-data-circle A B)
                ( map-aut-family-with-descent-data-circle A)
                ( λ x 
                  map-dependent-automorphism-double-family-with-dependent-descent-data-circle
                    ( A)
                    ( B))
                ( x , r) 
              ( x , r)))
      by
        associative-Σ
          ( type-family-with-descent-data-circle A)
          ( type-double-family-with-dependent-descent-data-circle A B)
          ( λ u 
            map-Σ
              ( type-double-family-with-dependent-descent-data-circle A B)
              ( map-aut-family-with-descent-data-circle A)
              ( λ x 
                map-dependent-automorphism-double-family-with-dependent-descent-data-circle
                  ( A)
                  ( B))
              ( u) 
            u)
     Σ ( type-family-with-descent-data-circle A)
        ( λ x 
          ( is-in-subtype subtype-descent-data-circle-subtype x) ×
          ( map-aut-family-with-descent-data-circle A x  x))
      by
        equiv-tot
          ( λ x 
            equiv-tot
              ( λ r 
                extensionality-type-subtype'
                  ( subtype-descent-data-circle-subtype)
                  ( _)
                  ( x , r)))
     Σ ( type-family-with-descent-data-circle A)
        ( λ x 
          ( map-aut-family-with-descent-data-circle A x  x) ×
          ( is-in-subtype subtype-descent-data-circle-subtype x))
      by equiv-tot  _  commutative-product)
     Σ ( fixpoint-descent-data-circle
          ( descent-data-family-with-descent-data-circle A))
        ( λ x  is-in-subtype subtype-descent-data-circle-subtype (pr1 x))
      by
        inv-associative-Σ
          ( type-family-with-descent-data-circle A)
          ( λ x  map-aut-family-with-descent-data-circle A x  x)
          ( λ x  is-in-subtype subtype-descent-data-circle-subtype (pr1 x))

  equiv-section-descent-data-circle-subtype-fixpoint-in-subtype :
    dependent-universal-property-circle l 
    ( (x : S)  family-descent-data-circle-dependent-pair-type l A B x) 
    ( Σ ( fixpoint-descent-data-circle
          ( descent-data-family-with-descent-data-circle A))
        ( λ x  is-in-subtype subtype-descent-data-circle-subtype (pr1 x)))
  equiv-section-descent-data-circle-subtype-fixpoint-in-subtype dup-circle =
    equiv-fixpoint-descent-data-circle-subtype-fixpoint-in-subtype ∘e
    ( equiv-ev-fixpoint-descent-data-circle
      ( l)
      ( family-with-descent-data-circle-dependent-pair-type l A B)
      ( dup-circle))

Recent changes