Chains in posets
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-16.
Last modified on 2024-11-20.
module order-theory.chains-posets where
Imports
open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.images open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.chains-preorders open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.subposets open import order-theory.total-orders
Idea
A chain¶ in a
poset P
is a subtype
S
of P
such that the ordering of P
restricted to S
is
linear.
Definitions
The predicate on subsets of posets to be a chain
module _ {l1 l2 l3 : Level} (X : Poset l1 l2) (S : Subposet l3 X) where is-chain-prop-Subposet : Prop (l1 ⊔ l2 ⊔ l3) is-chain-prop-Subposet = is-chain-prop-Subpreorder (preorder-Poset X) S is-chain-Subposet : UU (l1 ⊔ l2 ⊔ l3) is-chain-Subposet = is-chain-Subpreorder (preorder-Poset X) S is-prop-is-chain-Subposet : is-prop is-chain-Subposet is-prop-is-chain-Subposet = is-prop-is-chain-Subpreorder (preorder-Poset X) S
Chains in posets
chain-Poset : {l1 l2 : Level} (l : Level) (X : Poset l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l) chain-Poset l X = chain-Preorder l (preorder-Poset X) module _ {l1 l2 l3 : Level} (X : Poset l1 l2) (C : chain-Poset l3 X) where subposet-chain-Poset : Subposet l3 X subposet-chain-Poset = subpreorder-chain-Preorder (preorder-Poset X) C is-chain-subposet-chain-Poset : is-chain-Subposet X subposet-chain-Poset is-chain-subposet-chain-Poset = is-chain-subpreorder-chain-Preorder (preorder-Poset X) C type-chain-Poset : UU (l1 ⊔ l3) type-chain-Poset = type-chain-Preorder (preorder-Poset X) C inclusion-type-chain-Poset : type-chain-Poset → type-Poset X inclusion-type-chain-Poset = inclusion-subpreorder-chain-Preorder (preorder-Poset X) C module _ {l1 l2 l3 l4 : Level} (X : Poset l1 l2) (C : chain-Poset l3 X) (D : chain-Poset l4 X) where inclusion-prop-chain-Poset : Prop (l1 ⊔ l3 ⊔ l4) inclusion-prop-chain-Poset = inclusion-prop-chain-Preorder (preorder-Poset X) C D inclusion-chain-Poset : UU (l1 ⊔ l3 ⊔ l4) inclusion-chain-Poset = inclusion-chain-Preorder (preorder-Poset X) C D is-prop-inclusion-chain-Poset : is-prop inclusion-chain-Poset is-prop-inclusion-chain-Poset = is-prop-inclusion-chain-Preorder (preorder-Poset X) C D
Properties
Any order preserving maps from a total order into a poset induces a chain
module _ {l1 l2 l3 l4 : Level} (X : Poset l1 l2) (T : Total-Order l3 l4) (f : hom-Poset (poset-Total-Order T) X) where subposet-chain-hom-total-order-Poset : Subposet (l1 ⊔ l3) X subposet-chain-hom-total-order-Poset = subtype-im (map-hom-Poset (poset-Total-Order T) X f) is-chain-chain-hom-total-order-Poset : is-chain-Subposet X subposet-chain-hom-total-order-Poset is-chain-chain-hom-total-order-Poset (x , u) (y , v) = rec-trunc-Prop ( leq-prop-Poset X x y ∨ leq-prop-Poset X y x) ( λ p → rec-trunc-Prop ( leq-prop-Poset X x y ∨ leq-prop-Poset X y x) ( λ q → rec-trunc-Prop ( leq-prop-Poset X x y ∨ leq-prop-Poset X y x) ( rec-coproduct ( λ H → inl-disjunction ( concatenate-eq-leq-eq-Poset' X ( pr2 p) ( preserves-order-map-hom-Poset (poset-Total-Order T) X f ( pr1 p) ( pr1 q) ( H)) ( pr2 q))) ( λ H → inr-disjunction ( concatenate-eq-leq-eq-Poset' X ( pr2 q) ( preserves-order-map-hom-Poset (poset-Total-Order T) X f ( pr1 q) ( pr1 p) ( H)) ( pr2 p)))) ( is-total-Total-Order T (pr1 p) (pr1 q))) ( v)) ( u) chain-hom-total-order-Poset : chain-Poset (l1 ⊔ l3) X chain-hom-total-order-Poset = subposet-chain-hom-total-order-Poset , is-chain-chain-hom-total-order-Poset
External links
- Total order, chains at Wikipedia
- chain, in order theory at Lab
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-10-20. Fredrik Bakke and Egbert Rijke. Order theory from @spcfox’s modal logic (#1205).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. cleaning up order theory (#591).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).