Propositions
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Ian Ray.
Created on 2022-02-07.
Last modified on 2025-01-07.
module foundation-core.propositions where
Imports
open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.transport-along-identifications
Idea
A type is a proposition¶ if its identity types are contractible. This condition is equivalent to the condition that it has up to identification at most one element.
Definitions
The predicate of being a proposition
is-prop : {l : Level} (A : UU l) → UU l is-prop A = (x y : A) → is-contr (x = y)
The type of propositions
Prop : (l : Level) → UU (lsuc l) Prop l = Σ (UU l) is-prop module _ {l : Level} where type-Prop : Prop l → UU l type-Prop P = pr1 P abstract is-prop-type-Prop : (P : Prop l) → is-prop (type-Prop P) is-prop-type-Prop P = pr2 P
Examples
We prove here only that any contractible type is a proposition. The fact that the empty type and the unit type are propositions can be found in
Properties
To show that a type is a proposition we may assume it has an element
abstract is-prop-has-element : {l1 : Level} {X : UU l1} → (X → is-prop X) → is-prop X is-prop-has-element f x y = f x x y
Equivalent characterizations of propositions
module _ {l : Level} (A : UU l) where all-elements-equal : UU l all-elements-equal = (x y : A) → x = y is-proof-irrelevant : UU l is-proof-irrelevant = A → is-contr A module _ {l : Level} {A : UU l} where abstract is-prop-all-elements-equal : all-elements-equal A → is-prop A pr1 (is-prop-all-elements-equal H x y) = (inv (H x x)) ∙ (H x y) pr2 (is-prop-all-elements-equal H x .x) refl = left-inv (H x x) abstract eq-is-prop' : is-prop A → all-elements-equal A eq-is-prop' H x y = pr1 (H x y) abstract eq-is-prop : is-prop A → {x y : A} → x = y eq-is-prop H {x} {y} = eq-is-prop' H x y abstract is-proof-irrelevant-all-elements-equal : all-elements-equal A → is-proof-irrelevant A pr1 (is-proof-irrelevant-all-elements-equal H a) = a pr2 (is-proof-irrelevant-all-elements-equal H a) = H a abstract is-proof-irrelevant-is-prop : is-prop A → is-proof-irrelevant A is-proof-irrelevant-is-prop = is-proof-irrelevant-all-elements-equal ∘ eq-is-prop' abstract is-prop-is-proof-irrelevant : is-proof-irrelevant A → is-prop A is-prop-is-proof-irrelevant H x y = is-prop-is-contr (H x) x y abstract eq-is-proof-irrelevant : is-proof-irrelevant A → all-elements-equal A eq-is-proof-irrelevant = eq-is-prop' ∘ is-prop-is-proof-irrelevant abstract eq-type-Prop : {l : Level} (P : Prop l) → {x y : type-Prop P} → x = y eq-type-Prop P = eq-is-prop (is-prop-type-Prop P) abstract is-proof-irrelevant-type-Prop : {l : Level} (P : Prop l) → is-proof-irrelevant (type-Prop P) is-proof-irrelevant-type-Prop P = is-proof-irrelevant-is-prop (is-prop-type-Prop P)
Propositions are closed under equivalences
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-equiv : {f : A → B} → is-equiv f → is-prop B → is-prop A is-prop-is-equiv {f} E H = is-prop-is-proof-irrelevant ( λ a → is-contr-is-equiv B f E (is-proof-irrelevant-is-prop H (f a))) abstract is-prop-equiv : A ≃ B → is-prop B → is-prop A is-prop-equiv (f , is-equiv-f) = is-prop-is-equiv is-equiv-f module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-equiv' : {f : A → B} → is-equiv f → is-prop A → is-prop B is-prop-is-equiv' E H = is-prop-is-equiv (is-equiv-map-inv-is-equiv E) H abstract is-prop-equiv' : A ≃ B → is-prop A → is-prop B is-prop-equiv' (f , is-equiv-f) = is-prop-is-equiv' is-equiv-f
Propositions are closed under dependent pair types
abstract is-prop-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-prop A → ((x : A) → is-prop (B x)) → is-prop (Σ A B) is-prop-Σ H K x y = is-contr-equiv' ( Eq-Σ x y) ( equiv-eq-pair-Σ x y) ( is-contr-Σ' ( H (pr1 x) (pr1 y)) ( λ p → K (pr1 y) (tr _ p (pr2 x)) (pr2 y))) Σ-Prop : {l1 l2 : Level} (P : Prop l1) (Q : type-Prop P → Prop l2) → Prop (l1 ⊔ l2) pr1 (Σ-Prop P Q) = Σ (type-Prop P) (λ p → type-Prop (Q p)) pr2 (Σ-Prop P Q) = is-prop-Σ ( is-prop-type-Prop P) ( λ p → is-prop-type-Prop (Q p))
If Σ A B
is a proposition and there is a section (x : A) → B x
then A
is a proposition
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (s : (x : A) → B x) where is-proof-irrelevant-base-is-proof-irrelevant-Σ' : is-proof-irrelevant (Σ A B) → is-proof-irrelevant A is-proof-irrelevant-base-is-proof-irrelevant-Σ' H a = is-contr-base-is-contr-Σ' A B s (H (a , s a)) is-prop-base-is-prop-Σ' : is-prop (Σ A B) → is-prop A is-prop-base-is-prop-Σ' H = is-prop-is-proof-irrelevant ( is-proof-irrelevant-base-is-proof-irrelevant-Σ' ( is-proof-irrelevant-is-prop H))
Propositions are closed under cartesian product types
abstract is-prop-product : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop A → is-prop B → is-prop (A × B) is-prop-product H K = is-prop-Σ H (λ x → K) module _ {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) where type-product-Prop : UU (l1 ⊔ l2) type-product-Prop = type-Prop P × type-Prop Q is-prop-product-Prop : is-prop type-product-Prop is-prop-product-Prop = is-prop-product (is-prop-type-Prop P) (is-prop-type-Prop Q) product-Prop : Prop (l1 ⊔ l2) product-Prop = (type-product-Prop , is-prop-product-Prop)
Products of families of propositions are propositions
abstract is-prop-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-prop (B x)) → is-prop ((x : A) → B x) is-prop-Π H = is-prop-is-proof-irrelevant ( λ f → is-contr-Π (λ x → is-proof-irrelevant-is-prop (H x) (f x))) module _ {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) where type-Π-Prop : UU (l1 ⊔ l2) type-Π-Prop = (x : A) → type-Prop (P x) is-prop-Π-Prop : is-prop type-Π-Prop is-prop-Π-Prop = is-prop-Π (λ x → is-prop-type-Prop (P x)) Π-Prop : Prop (l1 ⊔ l2) pr1 Π-Prop = type-Π-Prop pr2 Π-Prop = is-prop-Π-Prop
We now repeat the above for implicit Π-types.
abstract is-prop-implicit-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-prop (B x)) → is-prop ({x : A} → B x) is-prop-implicit-Π H = is-prop-equiv ( ( λ f x → f {x}) , ( is-equiv-is-invertible (λ g {x} → g x) (refl-htpy) (refl-htpy))) ( is-prop-Π H) module _ {l1 l2 : Level} (A : UU l1) (P : A → Prop l2) where type-implicit-Π-Prop : UU (l1 ⊔ l2) type-implicit-Π-Prop = {x : A} → type-Prop (P x) is-prop-implicit-Π-Prop : is-prop type-implicit-Π-Prop is-prop-implicit-Π-Prop = is-prop-implicit-Π (λ x → is-prop-type-Prop (P x)) implicit-Π-Prop : Prop (l1 ⊔ l2) pr1 implicit-Π-Prop = type-implicit-Π-Prop pr2 implicit-Π-Prop = is-prop-implicit-Π-Prop
The type of functions into a proposition is a proposition
abstract is-prop-function-type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-prop B → is-prop (A → B) is-prop-function-type H = is-prop-Π (λ _ → H) type-function-Prop : {l1 l2 : Level} → UU l1 → Prop l2 → UU (l1 ⊔ l2) type-function-Prop A P = A → type-Prop P is-prop-function-Prop : {l1 l2 : Level} {A : UU l1} (P : Prop l2) → is-prop (type-function-Prop A P) is-prop-function-Prop P = is-prop-function-type (is-prop-type-Prop P) function-Prop : {l1 l2 : Level} → UU l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (function-Prop A P) = type-function-Prop A P pr2 (function-Prop A P) = is-prop-function-Prop P type-hom-Prop : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → UU (l1 ⊔ l2) type-hom-Prop P = type-function-Prop (type-Prop P) is-prop-hom-Prop : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → is-prop (type-hom-Prop P Q) is-prop-hom-Prop P = is-prop-function-Prop hom-Prop : {l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (hom-Prop P Q) = type-hom-Prop P Q pr2 (hom-Prop P Q) = is-prop-hom-Prop P Q infixr 5 _⇒_ _⇒_ = hom-Prop
The type of equivalences between two propositions is a proposition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-prop-equiv-is-prop : is-prop A → is-prop B → is-prop (A ≃ B) is-prop-equiv-is-prop H K = is-prop-Σ ( is-prop-function-type K) ( λ f → is-prop-product ( is-prop-Σ ( is-prop-function-type H) ( λ g → is-prop-is-contr (is-contr-Π (λ y → K (f (g y)) y)))) ( is-prop-Σ ( is-prop-function-type H) ( λ h → is-prop-is-contr (is-contr-Π (λ x → H (h (f x)) x))))) type-equiv-Prop : { l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → UU (l1 ⊔ l2) type-equiv-Prop P Q = (type-Prop P) ≃ (type-Prop Q) abstract is-prop-type-equiv-Prop : {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) → is-prop (type-equiv-Prop P Q) is-prop-type-equiv-Prop P Q = is-prop-equiv-is-prop (is-prop-type-Prop P) (is-prop-type-Prop Q) equiv-Prop : { l1 l2 : Level} → Prop l1 → Prop l2 → Prop (l1 ⊔ l2) pr1 (equiv-Prop P Q) = type-equiv-Prop P Q pr2 (equiv-Prop P Q) = is-prop-type-equiv-Prop P Q
A type is a proposition if and only if the type of its endomaps is contractible
abstract is-prop-is-contr-endomaps : {l : Level} (P : UU l) → is-contr (P → P) → is-prop P is-prop-is-contr-endomaps P H = is-prop-all-elements-equal (λ x → htpy-eq (eq-is-contr H)) abstract is-contr-endomaps-is-prop : {l : Level} (P : UU l) → is-prop P → is-contr (P → P) is-contr-endomaps-is-prop P is-prop-P = is-proof-irrelevant-is-prop (is-prop-function-type is-prop-P) id
Being a proposition is a proposition
abstract is-prop-is-prop : {l : Level} (A : UU l) → is-prop (is-prop A) is-prop-is-prop A = is-prop-Π (λ x → is-prop-Π (λ y → is-property-is-contr)) is-prop-Prop : {l : Level} (A : UU l) → Prop l pr1 (is-prop-Prop A) = is-prop A pr2 (is-prop-Prop A) = is-prop-is-prop A
See also
Operations on propositions
There is a wide range of operations on propositions due to the rich structure of intuitionistic logic. Below we give a structured overview of a notable selection of such operations and their notation in the library.
The list is split into two sections, the first consists of operations that generalize to arbitrary types and even sufficiently nice subuniverses, such as -types.
Name | Operator on types | Operator on propositions/subtypes |
---|---|---|
Dependent sum | Σ | Σ-Prop |
Dependent product | Π | Π-Prop |
Functions | → | ⇒ |
Logical equivalence | ↔ | ⇔ |
Product | × | product-Prop |
Join | * | join-Prop |
Exclusive sum | exclusive-sum | exclusive-sum-Prop |
Coproduct | + | N/A |
Note that for many operations in the second section, there is an equivalent operation on propositions in the first.
Name | Operator on types | Operator on propositions/subtypes |
---|---|---|
Initial object | empty | empty-Prop |
Terminal object | unit | unit-Prop |
Existential quantification | exists-structure | ∃ |
Unique existential quantification | uniquely-exists-structure | ∃! |
Universal quantification | ∀' (equivalent to Π-Prop ) | |
Conjunction | ∧ (equivalent to product-Prop ) | |
Disjunction | disjunction-type | ∨ (equivalent to join-Prop ) |
Exclusive disjunction | xor-type | ⊻ (equivalent to exclusive-sum-Prop ) |
Negation | ¬ | ¬' |
Double negation | ¬¬ | ¬¬' |
We can also organize these operations by indexed and binary variants, giving us the following table:
Name | Binary | Indexed |
---|---|---|
Product | × | Π |
Conjunction | ∧ | ∀' |
Constructive existence | + | Σ |
Existence | ∨ | ∃ |
Unique existence | ⊻ | ∃! |
Table of files about propositional logic
The following table gives an overview of basic constructions in propositional logic and related considerations.
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).