Complete precategories
Content created by Egbert Rijke, Fernando Chu and Fredrik Bakke.
Created on 2024-08-29.
Last modified on 2024-08-29.
module category-theory.complete-precategories where
Imports
open import category-theory.cones-precategories open import category-theory.functors-precategories open import category-theory.limits-precategories open import category-theory.precategories open import category-theory.terminal-objects-precategories open import foundation.universe-levels
Idea
A complete precategory¶ is a precategory that has all limits for diagrams from a specified universe.
More precisely, we say that a precategory D
is (l1 , l2)
-complete if for any
C : Precategory l1 l2
and any
functor F : C → D
the type of
limits of F
is inhabited.
Definition
is-complete-Precategory : (l1 l2 : Level) {l3 l4 : Level} (D : Precategory l3 l4) → UU (lsuc l1 ⊔ lsuc l2 ⊔ l3 ⊔ l4) is-complete-Precategory l1 l2 D = (C : Precategory l1 l2) (F : functor-Precategory C D) → limit-Precategory C D F
Recent changes
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).