Trivial concrete groups
Content created by Fredrik Bakke.
Created on 2023-09-15.
Last modified on 2023-09-15.
module group-theory.trivial-concrete-groups where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.propositions open import foundation.truncation-levels open import foundation.unit-type open import foundation.universe-levels open import group-theory.concrete-groups open import higher-group-theory.trivial-higher-groups
Idea
A concrete group G
is trivial if its
classifying type is contractible.
Definitions
Trivial higher groups
module _ {l : Level} (G : Concrete-Group l) where is-trivial-prop-Concrete-Group : Prop l is-trivial-prop-Concrete-Group = is-trivial-prop-∞-Group (∞-group-Concrete-Group G) is-trivial-Concrete-Group : UU l is-trivial-Concrete-Group = type-Prop is-trivial-prop-Concrete-Group is-property-is-trivial-Concrete-Group : is-prop (is-trivial-Concrete-Group) is-property-is-trivial-Concrete-Group = is-prop-type-Prop is-trivial-prop-Concrete-Group
Higher groups with contractible classifying type
module _ {l : Level} (G : Concrete-Group l) where has-contractible-classifying-type-prop-Concrete-Group : Prop l has-contractible-classifying-type-prop-Concrete-Group = has-contractible-classifying-type-prop-∞-Group (∞-group-Concrete-Group G) has-contractible-classifying-type-Concrete-Group : UU l has-contractible-classifying-type-Concrete-Group = type-Prop has-contractible-classifying-type-prop-Concrete-Group is-property-has-contractible-classifying-type-Concrete-Group : is-prop (has-contractible-classifying-type-Concrete-Group) is-property-has-contractible-classifying-type-Concrete-Group = is-prop-type-Prop has-contractible-classifying-type-prop-Concrete-Group
The trivial concrete group
trivial-Concrete-Group : {l : Level} → Concrete-Group l pr1 trivial-Concrete-Group = trivial-∞-Group pr2 trivial-Concrete-Group = is-trunc-is-contr (one-𝕋) (is-contr-raise-unit) (raise-star) (raise-star) has-contractible-classifying-type-trivial-Concrete-Group : {l : Level} → has-contractible-classifying-type-Concrete-Group (trivial-Concrete-Group {l}) has-contractible-classifying-type-trivial-Concrete-Group = has-contractible-classifying-type-trivial-∞-Group
Properties
Having contractible classifying type is equivalent to having contractible underlying type
This remains to be formalized.
Recent changes
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).