Infinite conatural numbers

Content created by Fredrik Bakke.

Created on 2025-01-04.
Last modified on 2025-01-31.

{-# OPTIONS --guardedness #-}

module elementary-number-theory.infinite-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers
open import elementary-number-theory.equality-conatural-numbers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.universe-levels

open import foundation-core.identity-types

Idea

A conatural number x is infinite if it is its own predecessor

  decons-ℕ∞ x = inl x

or, equivalently, if it is its own successor

  x = succ-ℕ∞ x.

Definitions

The predicate on conatural numbers of being infinite

is-infinite-ℕ∞ : ℕ∞  UU lzero
is-infinite-ℕ∞ x = decons-ℕ∞ x  inl x

is-infinite-successor-condition-ℕ∞ : ℕ∞  UU lzero
is-infinite-successor-condition-ℕ∞ x = x  succ-ℕ∞ x

Properties

The two definitions of being infinite agree

is-infinite-is-infinite-successor-condition-ℕ∞ :
  {x : ℕ∞}  is-infinite-successor-condition-ℕ∞ x  is-infinite-ℕ∞ x
is-infinite-is-infinite-successor-condition-ℕ∞ = ap decons-ℕ∞

is-infinite-successor-condition-is-infinite-ℕ∞ :
  {x : ℕ∞}  is-infinite-ℕ∞ x  is-infinite-successor-condition-ℕ∞ x
is-infinite-successor-condition-is-infinite-ℕ∞ = is-injective-decons-ℕ∞

The point at infinity is infinite

is-infinite-infinity-ℕ∞ : is-infinite-ℕ∞ infinity-ℕ∞
is-infinite-infinity-ℕ∞ = refl

is-infinite-successor-condition-infinity-ℕ∞ :
  is-infinite-successor-condition-ℕ∞ infinity-ℕ∞
is-infinite-successor-condition-infinity-ℕ∞ =
  is-infinite-successor-condition-is-infinite-ℕ∞ is-infinite-infinity-ℕ∞

Recent changes