Infinite conatural numbers
Content created by Fredrik Bakke.
Created on 2025-01-04.
Last modified on 2025-01-04.
{-# OPTIONS --guardedness #-} module elementary-number-theory.infinite-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.universe-levels open import foundation-core.identity-types
Idea
A conatural number x
is
infinite¶
if it is its own predecessor
decons-ℕ∞ x = inl x
or, equivalently, if it is its own successor
x = succ-ℕ∞ x.
Definitions
The predicate on conatural numbers of being infinite
is-infinite-ℕ∞ : ℕ∞ → UU lzero is-infinite-ℕ∞ x = decons-ℕ∞ x = inl x is-infinite-successor-condition-ℕ∞ : ℕ∞ → UU lzero is-infinite-successor-condition-ℕ∞ x = x = succ-ℕ∞ x
Properties
The point at infinity is infinite
is-infinite-infinity-ℕ∞ : is-infinite-ℕ∞ infinity-ℕ∞ is-infinite-infinity-ℕ∞ = refl
The two definitions of being infinite agree
is-infinite-is-infinite-successor-condition-ℕ∞ : (x : ℕ∞) → is-infinite-successor-condition-ℕ∞ x → is-infinite-ℕ∞ x is-infinite-is-infinite-successor-condition-ℕ∞ x = ap decons-ℕ∞ is-infinite-successor-condition-cons-is-infinite-cons-ℕ∞ : (x : ℕ∞) → is-infinite-ℕ∞ (cons-ℕ∞ (decons-ℕ∞ x)) → is-infinite-successor-condition-ℕ∞ (cons-ℕ∞ (decons-ℕ∞ x)) is-infinite-successor-condition-cons-is-infinite-cons-ℕ∞ x = ind-coproduct ( λ y → is-infinite-ℕ∞ (cons-ℕ∞ y) → is-infinite-successor-condition-ℕ∞ (cons-ℕ∞ y)) ( λ x' → ap cons-ℕ∞) ( λ x' → ap cons-ℕ∞) ( decons-ℕ∞ x)
It remains to formalize the full equivalence.
The point at infinity is unique
eq-is-infinite-successor-condition-ℕ∞ :
(x y : ℕ∞) →
is-infinite-successor-condition-ℕ∞ x →
is-infinite-successor-condition-ℕ∞ y →
x = y
eq-is-infinite-successor-condition-ℕ∞ x y p q =
Recent changes
- 2025-01-04. Fredrik Bakke. Coinductive definition of the conatural numbers (#1232).