Infinite conatural numbers
Content created by Fredrik Bakke.
Created on 2025-01-04.
Last modified on 2025-01-31.
{-# OPTIONS --guardedness #-} module elementary-number-theory.infinite-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers open import elementary-number-theory.equality-conatural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.universe-levels open import foundation-core.identity-types
Idea
A conatural number x
is
infinite¶
if it is its own predecessor
decons-ℕ∞ x = inl x
or, equivalently, if it is its own successor
x = succ-ℕ∞ x.
Definitions
The predicate on conatural numbers of being infinite
is-infinite-ℕ∞ : ℕ∞ → UU lzero is-infinite-ℕ∞ x = decons-ℕ∞ x = inl x is-infinite-successor-condition-ℕ∞ : ℕ∞ → UU lzero is-infinite-successor-condition-ℕ∞ x = x = succ-ℕ∞ x
Properties
The two definitions of being infinite agree
is-infinite-is-infinite-successor-condition-ℕ∞ : {x : ℕ∞} → is-infinite-successor-condition-ℕ∞ x → is-infinite-ℕ∞ x is-infinite-is-infinite-successor-condition-ℕ∞ = ap decons-ℕ∞ is-infinite-successor-condition-is-infinite-ℕ∞ : {x : ℕ∞} → is-infinite-ℕ∞ x → is-infinite-successor-condition-ℕ∞ x is-infinite-successor-condition-is-infinite-ℕ∞ = is-injective-decons-ℕ∞
The point at infinity is infinite
is-infinite-infinity-ℕ∞ : is-infinite-ℕ∞ infinity-ℕ∞ is-infinite-infinity-ℕ∞ = refl is-infinite-successor-condition-infinity-ℕ∞ : is-infinite-successor-condition-ℕ∞ infinity-ℕ∞ is-infinite-successor-condition-infinity-ℕ∞ = is-infinite-successor-condition-is-infinite-ℕ∞ is-infinite-infinity-ℕ∞
Recent changes
- 2025-01-31. Fredrik Bakke. Equality of conatural numbers (#1236).
- 2025-01-04. Fredrik Bakke. Coinductive definition of the conatural numbers (#1232).