Action on equivalences in type families over subuniverses
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-12.
Last modified on 2024-04-25.
module foundation.action-on-equivalences-type-families-over-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-induction open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.univalence
Ideas
Given a subuniverse P
, any family of types B
indexed by types of P
has an
action on equivalences
obtained by using the univalence axiom.
Definitions
The action on equivalences of a family of types over a subuniverse
module _ { l1 l2 l3 : Level} ( P : subuniverse l1 l2) (B : type-subuniverse P → UU l3) where abstract unique-action-equiv-family-over-subuniverse : (X : type-subuniverse P) → is-contr ( fiber (ev-id-equiv-subuniverse P X {λ Y e → B X ≃ B Y}) id-equiv) unique-action-equiv-family-over-subuniverse X = is-contr-map-ev-id-equiv-subuniverse P X (λ Y e → B X ≃ B Y) id-equiv action-equiv-family-over-subuniverse : (X Y : type-subuniverse P) → pr1 X ≃ pr1 Y → B X ≃ B Y action-equiv-family-over-subuniverse X Y = equiv-eq ∘ ap B ∘ eq-equiv-subuniverse P compute-id-equiv-action-equiv-family-over-subuniverse : (X : type-subuniverse P) → action-equiv-family-over-subuniverse X X id-equiv = id-equiv compute-id-equiv-action-equiv-family-over-subuniverse X = ap (equiv-eq ∘ ap B) (compute-eq-equiv-id-equiv-subuniverse P)
Properties
The action on equivalences of a family of types over a subuniverse fits in a commuting square with equiv-eq
We claim that the square
ap B
(X = Y) --------> (B X = B Y)
| |
equiv-eq | | equiv-eq
∨ ∨
(X ≃ Y) ---------> (B X ≃ B Y).
B
commutes for any two types X Y : type-subuniverse P
and any family of types
B
over the subuniverse P
.
coherence-square-action-equiv-family-over-subuniverse : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (B : type-subuniverse P → UU l3) → (X Y : type-subuniverse P) → coherence-square-maps ( ap B {X} {Y}) ( equiv-eq-subuniverse P X Y) ( equiv-eq) ( action-equiv-family-over-subuniverse P B X Y) coherence-square-action-equiv-family-over-subuniverse P B X .X refl = compute-id-equiv-action-equiv-family-over-subuniverse P B X
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).