Maps in subuniverses
Content created by Fredrik Bakke.
Created on 2024-08-18.
Last modified on 2025-02-10.
module foundation.maps-in-subuniverses where
Imports
open import foundation.homotopies open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.fibers-of-maps
Idea
Given a subuniverse 𝒫
, a map f : A → B
is said
to be a
map in 𝒫
¶,
or a 𝒫
-map, if its fibers are in 𝒫
.
Definitions
The predicate on maps of being in a subuniverse
is-in-subuniverse-map : {l1 l2 l3 : Level} (P : subuniverse (l1 ⊔ l2) l3) {A : UU l1} {B : UU l2} → (A → B) → UU (l2 ⊔ l3) is-in-subuniverse-map P {A} {B} f = (b : B) → is-in-subuniverse P (fiber f b)
Properties
Subuniverses are closed under homotopies of maps
module _ {l1 l2 l3 : Level} (P : subuniverse (l1 ⊔ l2) l3) {A : UU l1} {B : UU l2} {f g : A → B} where is-in-subuniverse-map-htpy : f ~ g → is-in-subuniverse-map P f → is-in-subuniverse-map P g is-in-subuniverse-map-htpy H F y = is-in-subuniverse-equiv' P (equiv-fiber-htpy H y) (F y)
See also
Recent changes
- 2025-02-10. Fredrik Bakke. Some extensions of the fundamental theorem of identity types (#1243).
- 2024-08-18. Fredrik Bakke. Maps in subuniverses (#1163).