Strict categories
Content created by Fredrik Bakke.
Created on 2023-10-20.
Last modified on 2024-03-11.
module category-theory.strict-categories where
Imports
open import category-theory.categories open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.isomorphisms-in-precategories open import category-theory.nonunital-precategories open import category-theory.precategories open import category-theory.preunivalent-categories open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.injective-maps open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels
Idea
A strict category¶ is a precategory for which the type of objects form a set. Such categories are the set-theoretic analogue to (univalent) categories, and have the disadvantages that strict categorical constructions may generally fail to be invariant under equivalences, and that the (essentially surjective/fully-faithful)-factorization system on functors requires the axiom of choice.
Definitions
The predicate on precategories of being a strict category
module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-strict-category-prop-Precategory : Prop l1 is-strict-category-prop-Precategory = is-set-Prop (obj-Precategory C) is-strict-category-Precategory : UU l1 is-strict-category-Precategory = type-Prop is-strict-category-prop-Precategory
The predicate on preunivalent categories of being a strict category
module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where is-strict-category-prop-Preunivalent-Category : Prop l1 is-strict-category-prop-Preunivalent-Category = is-strict-category-prop-Precategory (precategory-Preunivalent-Category C) is-strict-category-Preunivalent-Category : UU l1 is-strict-category-Preunivalent-Category = type-Prop is-strict-category-prop-Preunivalent-Category
The predicate on categories of being a strict category
We note that (univalent) categories that are strict form a very restricted class of strict categories where every isomorphism-set is a proposition. Such a category is called gaunt.
module _ {l1 l2 : Level} (C : Category l1 l2) where is-strict-category-prop-Category : Prop l1 is-strict-category-prop-Category = is-strict-category-prop-Precategory (precategory-Category C) is-strict-category-Category : UU l1 is-strict-category-Category = type-Prop is-strict-category-prop-Category
The type of strict categories
Strict-Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Strict-Category l1 l2 = Σ (Precategory l1 l2) is-strict-category-Precategory module _ {l1 l2 : Level} (C : Strict-Category l1 l2) where precategory-Strict-Category : Precategory l1 l2 precategory-Strict-Category = pr1 C obj-Strict-Category : UU l1 obj-Strict-Category = obj-Precategory precategory-Strict-Category is-set-obj-Strict-Category : is-set obj-Strict-Category is-set-obj-Strict-Category = pr2 C hom-set-Strict-Category : obj-Strict-Category → obj-Strict-Category → Set l2 hom-set-Strict-Category = hom-set-Precategory precategory-Strict-Category hom-Strict-Category : obj-Strict-Category → obj-Strict-Category → UU l2 hom-Strict-Category = hom-Precategory precategory-Strict-Category is-set-hom-Strict-Category : (x y : obj-Strict-Category) → is-set (hom-Strict-Category x y) is-set-hom-Strict-Category = is-set-hom-Precategory precategory-Strict-Category comp-hom-Strict-Category : {x y z : obj-Strict-Category} → hom-Strict-Category y z → hom-Strict-Category x y → hom-Strict-Category x z comp-hom-Strict-Category = comp-hom-Precategory precategory-Strict-Category associative-comp-hom-Strict-Category : {x y z w : obj-Strict-Category} (h : hom-Strict-Category z w) (g : hom-Strict-Category y z) (f : hom-Strict-Category x y) → comp-hom-Strict-Category (comp-hom-Strict-Category h g) f = comp-hom-Strict-Category h (comp-hom-Strict-Category g f) associative-comp-hom-Strict-Category = associative-comp-hom-Precategory precategory-Strict-Category associative-composition-operation-Strict-Category : associative-composition-operation-binary-family-Set hom-set-Strict-Category associative-composition-operation-Strict-Category = associative-composition-operation-Precategory precategory-Strict-Category id-hom-Strict-Category : {x : obj-Strict-Category} → hom-Strict-Category x x id-hom-Strict-Category = id-hom-Precategory precategory-Strict-Category left-unit-law-comp-hom-Strict-Category : {x y : obj-Strict-Category} (f : hom-Strict-Category x y) → comp-hom-Strict-Category id-hom-Strict-Category f = f left-unit-law-comp-hom-Strict-Category = left-unit-law-comp-hom-Precategory precategory-Strict-Category right-unit-law-comp-hom-Strict-Category : {x y : obj-Strict-Category} (f : hom-Strict-Category x y) → comp-hom-Strict-Category f id-hom-Strict-Category = f right-unit-law-comp-hom-Strict-Category = right-unit-law-comp-hom-Precategory precategory-Strict-Category is-unital-composition-operation-Strict-Category : is-unital-composition-operation-binary-family-Set hom-set-Strict-Category comp-hom-Strict-Category is-unital-composition-operation-Strict-Category = is-unital-composition-operation-Precategory precategory-Strict-Category is-strict-category-Strict-Category : is-strict-category-Precategory precategory-Strict-Category is-strict-category-Strict-Category = pr2 C
The underlying nonunital precategory of a strict category
module _ {l1 l2 : Level} (C : Strict-Category l1 l2) where nonunital-precategory-Strict-Category : Nonunital-Precategory l1 l2 nonunital-precategory-Strict-Category = nonunital-precategory-Precategory (precategory-Strict-Category C)
The underlying preunivalent category of a strict category
module _ {l1 l2 : Level} (C : Strict-Category l1 l2) where abstract is-preunivalent-Strict-Category : is-preunivalent-Precategory (precategory-Strict-Category C) is-preunivalent-Strict-Category x y = is-emb-is-injective ( is-set-type-subtype ( is-iso-prop-Precategory (precategory-Strict-Category C)) ( is-set-hom-Strict-Category C x y)) ( λ _ → eq-is-prop (is-set-obj-Strict-Category C x y)) preunivalent-category-Strict-Category : Preunivalent-Category l1 l2 pr1 preunivalent-category-Strict-Category = precategory-Strict-Category C pr2 preunivalent-category-Strict-Category = is-preunivalent-Strict-Category
The total hom-set of a strict category
module _ {l1 l2 : Level} (C : Strict-Category l1 l2) where total-hom-Strict-Category : UU (l1 ⊔ l2) total-hom-Strict-Category = total-hom-Precategory (precategory-Strict-Category C) obj-total-hom-Strict-Category : total-hom-Strict-Category → obj-Strict-Category C × obj-Strict-Category C obj-total-hom-Strict-Category = obj-total-hom-Precategory (precategory-Strict-Category C) is-set-total-hom-Strict-Category : is-set total-hom-Strict-Category is-set-total-hom-Strict-Category = is-trunc-total-hom-is-trunc-obj-Precategory ( precategory-Strict-Category C) ( is-set-obj-Strict-Category C) total-hom-set-Strict-Category : Set (l1 ⊔ l2) total-hom-set-Strict-Category = total-hom-truncated-type-is-trunc-obj-Precategory ( precategory-Strict-Category C) ( is-set-obj-Strict-Category C)
Equalities induce morphisms
module _ {l1 l2 : Level} (C : Strict-Category l1 l2) where hom-eq-Strict-Category : (x y : obj-Strict-Category C) → x = y → hom-Strict-Category C x y hom-eq-Strict-Category = hom-eq-Precategory (precategory-Strict-Category C) hom-inv-eq-Strict-Category : (x y : obj-Strict-Category C) → x = y → hom-Strict-Category C y x hom-inv-eq-Strict-Category = hom-inv-eq-Precategory (precategory-Strict-Category C)
Pre- and postcomposition by a morphism
precomp-hom-Strict-Category : {l1 l2 : Level} (C : Strict-Category l1 l2) {x y : obj-Strict-Category C} (f : hom-Strict-Category C x y) (z : obj-Strict-Category C) → hom-Strict-Category C y z → hom-Strict-Category C x z precomp-hom-Strict-Category C = precomp-hom-Precategory (precategory-Strict-Category C) postcomp-hom-Strict-Category : {l1 l2 : Level} (C : Strict-Category l1 l2) {x y : obj-Strict-Category C} (f : hom-Strict-Category C x y) (z : obj-Strict-Category C) → hom-Strict-Category C z x → hom-Strict-Category C z y postcomp-hom-Strict-Category C = postcomp-hom-Precategory (precategory-Strict-Category C)
See also
- Preunivalent categories for the common generalization of (univalent) categories and strict categories.
- Gaunt categories for the common intersection of (univalent) categories and strict categories.
External links
- Strict Precategories at 1lab
- strict category at Lab
- Category (mathematics) at Wikipedia
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-10-21. Fredrik Bakke. Improve computational behaviour of
iso-eq
(#873). - 2023-10-20. Fredrik Bakke. Strict categories (#867).