Path-split maps

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-01-26.
Last modified on 2024-02-06.

module foundation.path-split-maps where

open import foundation-core.path-split-maps public
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.iterated-dependent-product-types
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.propositions

Properties

Being path-split is a property

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  abstract
    is-prop-is-path-split : (f : A  B)  is-prop (is-path-split f)
    is-prop-is-path-split f =
      is-prop-is-proof-irrelevant
        ( λ is-path-split-f 
          ( is-contr-product
            ( is-contr-section-is-equiv
              ( is-equiv-is-path-split f is-path-split-f))
            ( is-contr-iterated-Π 2
              ( λ x y 
                is-contr-section-is-equiv
                  ( is-emb-is-equiv
                    ( is-equiv-is-path-split f is-path-split-f) x y)))))

  abstract
    is-equiv-is-path-split-is-equiv :
      (f : A  B)  is-equiv (is-path-split-is-equiv f)
    is-equiv-is-path-split-is-equiv f =
      is-equiv-is-prop
        ( is-property-is-equiv f)
        ( is-prop-is-path-split f)
        ( is-equiv-is-path-split f)

  equiv-is-path-split-is-equiv : (f : A  B)  is-equiv f  is-path-split f
  equiv-is-path-split-is-equiv f =
    pair (is-path-split-is-equiv f) (is-equiv-is-path-split-is-equiv f)

  abstract
    is-equiv-is-equiv-is-path-split :
      (f : A  B)  is-equiv (is-equiv-is-path-split f)
    is-equiv-is-equiv-is-path-split f =
      is-equiv-is-prop
        ( is-prop-is-path-split f)
        ( is-property-is-equiv f)
        ( is-path-split-is-equiv f)

  equiv-is-equiv-is-path-split : (f : A  B)  is-path-split f  is-equiv f
  equiv-is-equiv-is-path-split f =
    pair (is-equiv-is-path-split f) (is-equiv-is-equiv-is-path-split f)

See also

References

  1. Univalent Foundations Project, Homotopy Type Theory – Univalent Foundations of Mathematics (2013) (website, arXiv:1308.0729)
  2. Mike Shulman, Universal properties without function extensionality (November 2014) (HoTT Blog)

Recent changes