Elements of finite order
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-06.
Last modified on 2024-04-11.
module group-theory.elements-of-finite-order-groups where
Imports
open import elementary-number-theory.group-of-integers open import elementary-number-theory.nonzero-integers open import foundation.existential-quantification open import foundation.propositions open import foundation.universe-levels open import group-theory.groups open import group-theory.orders-of-elements-groups open import group-theory.subgroups open import group-theory.subgroups-generated-by-elements-groups
Idea
An element x
of a group G
is said to be of
finite order if the subgroup order x
of
ℤ
is
generated by a
nonzero integer.
Note that the condition of being of finite order is slightly stronger than the
condition of being a torsion element.
The latter condition merely asserts that there
exists a nonzero integer in the
subgroup order x
of ℤ
.
Definitions
The predicate of being an element of finite order
module _ {l1 : Level} (G : Group l1) (x : type-Group G) where has-finite-order-element-prop-Group : Prop l1 has-finite-order-element-prop-Group = ∃ ( nonzero-ℤ) ( λ k → has-same-elements-prop-Subgroup ℤ-Group ( subgroup-element-Group ℤ-Group (int-nonzero-ℤ k)) ( subgroup-order-element-Group G x))
See also
- Torsion elements of groups.
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-10-06. Egbert Rijke and Fredrik Bakke. Torsion-free groups (#813).