Nonnegative series in the real numbers

Content created by Louis Wasserman.

Created on 2025-12-25.
Last modified on 2025-12-25.

module analysis.nonnegative-series-real-numbers where
Imports
open import analysis.series-real-numbers

open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.propositions
open import foundation.universe-levels

open import order-theory.increasing-sequences-posets

open import real-numbers.absolute-value-real-numbers
open import real-numbers.addition-nonnegative-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.nonnegative-real-numbers

Idea

A series in ℝ is nonnegative if each of its terms is nonnegative.

Definition

is-nonnegative-prop-series-ℝ : {l : Level}  series-ℝ l  Prop l
is-nonnegative-prop-series-ℝ σ =
  Π-Prop   n  is-nonnegative-prop-ℝ (term-series-ℝ σ n))

is-nonnegative-series-ℝ : {l : Level}  series-ℝ l  UU l
is-nonnegative-series-ℝ σ = type-Prop (is-nonnegative-prop-series-ℝ σ)

If the terms of a series of real numbers are nonnegative, the partial sums are monotonic

abstract
  is-increasing-partial-sum-is-nonnegative-term-series-ℝ :
    {l : Level} (σ : series-ℝ l) 
    is-nonnegative-series-ℝ σ 
    is-increasing-sequence-Poset (ℝ-Poset l) (partial-sum-series-ℝ σ)
  is-increasing-partial-sum-is-nonnegative-term-series-ℝ {l} σ H =
    is-increasing-leq-succ-sequence-Poset
      ( ℝ-Poset l)
      ( partial-sum-series-ℝ σ)
      ( λ n  leq-left-add-real-ℝ⁰⁺ _ (term-series-ℝ σ n , H n))

Recent changes