Nonnegative series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2025-12-25.
module analysis.nonnegative-series-real-numbers where
Imports
open import analysis.series-real-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import order-theory.increasing-sequences-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers
Idea
A series in ℝ is nonnegative¶ if each of its terms is nonnegative.
Definition
is-nonnegative-prop-series-ℝ : {l : Level} → series-ℝ l → Prop l is-nonnegative-prop-series-ℝ σ = Π-Prop ℕ (λ n → is-nonnegative-prop-ℝ (term-series-ℝ σ n)) is-nonnegative-series-ℝ : {l : Level} → series-ℝ l → UU l is-nonnegative-series-ℝ σ = type-Prop (is-nonnegative-prop-series-ℝ σ)
If the terms of a series of real numbers are nonnegative, the partial sums are monotonic
abstract is-increasing-partial-sum-is-nonnegative-term-series-ℝ : {l : Level} (σ : series-ℝ l) → is-nonnegative-series-ℝ σ → is-increasing-sequence-Poset (ℝ-Poset l) (partial-sum-series-ℝ σ) is-increasing-partial-sum-is-nonnegative-term-series-ℝ {l} σ H = is-increasing-leq-succ-sequence-Poset ( ℝ-Poset l) ( partial-sum-series-ℝ σ) ( λ n → leq-left-add-real-ℝ⁰⁺ _ (term-series-ℝ σ n , H n))
Recent changes
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).