Divisibility of natural numbers
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elif Uskuplu, Julian KG, Maša Žaucer, Victor Blanchi, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2024-09-23.
module elementary-number-theory.divisibility-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negated-equality open import foundation.negation open import foundation.propositional-maps open import foundation.propositions open import foundation.transport-along-identifications open import foundation.type-arithmetic-empty-type open import foundation.unit-type open import foundation.universe-levels
Idea
A natural number m
is said to divide a natural number n
if there exists
a natural number k
equipped with an identification km = n
. Using the
Curry–Howard interpretation
of logic into type theory, we express divisibility as follows:
div-ℕ m n := Σ (k : ℕ), k *ℕ m = n.
If n
is a nonzero natural number, then div-ℕ m n
is always a proposition in
the sense that the type div-ℕ m n
contains at most one element.
Definitions
div-ℕ : ℕ → ℕ → UU lzero div-ℕ m n = Σ ℕ (λ k → k *ℕ m = n) quotient-div-ℕ : (x y : ℕ) → div-ℕ x y → ℕ quotient-div-ℕ x y H = pr1 H eq-quotient-div-ℕ : (x y : ℕ) (H : div-ℕ x y) → (quotient-div-ℕ x y H) *ℕ x = y eq-quotient-div-ℕ x y H = pr2 H eq-quotient-div-ℕ' : (x y : ℕ) (H : div-ℕ x y) → x *ℕ (quotient-div-ℕ x y H) = y eq-quotient-div-ℕ' x y H = commutative-mul-ℕ x (quotient-div-ℕ x y H) ∙ eq-quotient-div-ℕ x y H div-quotient-div-ℕ : (d x : ℕ) (H : div-ℕ d x) → div-ℕ (quotient-div-ℕ d x H) x pr1 (div-quotient-div-ℕ d x (u , p)) = d pr2 (div-quotient-div-ℕ d x (u , p)) = commutative-mul-ℕ d u ∙ p
Concatenating equality and divisibility
concatenate-eq-div-ℕ : {x y z : ℕ} → x = y → div-ℕ y z → div-ℕ x z concatenate-eq-div-ℕ refl p = p concatenate-div-eq-ℕ : {x y z : ℕ} → div-ℕ x y → y = z → div-ℕ x z concatenate-div-eq-ℕ p refl = p concatenate-eq-div-eq-ℕ : {x y z w : ℕ} → x = y → div-ℕ y z → z = w → div-ℕ x w concatenate-eq-div-eq-ℕ refl p refl = p
Properties
The quotients of a natural number n
by two natural numbers p
and q
are equal if p
and q
are equal
eq-quotient-div-eq-div-ℕ : (x y z : ℕ) → is-nonzero-ℕ x → x = y → (H : div-ℕ x z) → (I : div-ℕ y z) → quotient-div-ℕ x z H = quotient-div-ℕ y z I eq-quotient-div-eq-div-ℕ x y z n e H I = is-injective-left-mul-ℕ ( x) ( n) ( tr ( λ p → x *ℕ (quotient-div-ℕ x z H) = p *ℕ (quotient-div-ℕ y z I)) ( inv e) ( commutative-mul-ℕ x (quotient-div-ℕ x z H) ∙ ( eq-quotient-div-ℕ x z H ∙ ( inv (eq-quotient-div-ℕ y z I) ∙ commutative-mul-ℕ (quotient-div-ℕ y z I) y))))
Divisibility by a nonzero natural number is a property
is-prop-div-ℕ : (k x : ℕ) → is-nonzero-ℕ k → is-prop (div-ℕ k x) is-prop-div-ℕ k x f = is-prop-map-is-emb (is-emb-right-mul-ℕ k f) x
The divisibility relation is a partial order on the natural numbers
refl-div-ℕ : is-reflexive div-ℕ pr1 (refl-div-ℕ x) = 1 pr2 (refl-div-ℕ x) = left-unit-law-mul-ℕ x div-eq-ℕ : (x y : ℕ) → x = y → div-ℕ x y div-eq-ℕ x .x refl = refl-div-ℕ x antisymmetric-div-ℕ : is-antisymmetric div-ℕ antisymmetric-div-ℕ zero-ℕ zero-ℕ H K = refl antisymmetric-div-ℕ zero-ℕ (succ-ℕ y) (pair k p) K = inv (right-zero-law-mul-ℕ k) ∙ p antisymmetric-div-ℕ (succ-ℕ x) zero-ℕ H (pair l q) = inv q ∙ right-zero-law-mul-ℕ l antisymmetric-div-ℕ (succ-ℕ x) (succ-ℕ y) (pair k p) (pair l q) = ( inv (left-unit-law-mul-ℕ (succ-ℕ x))) ∙ ( ( ap ( _*ℕ (succ-ℕ x)) ( inv ( is-one-right-is-one-mul-ℕ l k ( is-one-is-left-unit-mul-ℕ (l *ℕ k) x ( ( associative-mul-ℕ l k (succ-ℕ x)) ∙ ( ap (l *ℕ_) p ∙ q)))))) ∙ ( p)) transitive-div-ℕ : is-transitive div-ℕ pr1 (transitive-div-ℕ x y z (pair l q) (pair k p)) = l *ℕ k pr2 (transitive-div-ℕ x y z (pair l q) (pair k p)) = associative-mul-ℕ l k x ∙ (ap (l *ℕ_) p ∙ q)
If x
is nonzero and d | x
, then d ≤ x
leq-div-succ-ℕ : (d x : ℕ) → div-ℕ d (succ-ℕ x) → leq-ℕ d (succ-ℕ x) leq-div-succ-ℕ d x (pair (succ-ℕ k) p) = concatenate-leq-eq-ℕ d (leq-mul-ℕ' k d) p leq-div-ℕ : (d x : ℕ) → is-nonzero-ℕ x → div-ℕ d x → leq-ℕ d x leq-div-ℕ d x f H with is-successor-is-nonzero-ℕ f ... | (pair y refl) = leq-div-succ-ℕ d y H leq-quotient-div-ℕ : (d x : ℕ) → is-nonzero-ℕ x → (H : div-ℕ d x) → leq-ℕ (quotient-div-ℕ d x H) x leq-quotient-div-ℕ d x f H = leq-div-ℕ (quotient-div-ℕ d x H) x f (div-quotient-div-ℕ d x H) leq-quotient-div-ℕ' : (d x : ℕ) → is-nonzero-ℕ d → (H : div-ℕ d x) → leq-ℕ (quotient-div-ℕ d x H) x leq-quotient-div-ℕ' d zero-ℕ f (zero-ℕ , p) = star leq-quotient-div-ℕ' d zero-ℕ f (succ-ℕ n , p) = f (is-zero-right-is-zero-add-ℕ _ d p) leq-quotient-div-ℕ' d (succ-ℕ x) f H = leq-quotient-div-ℕ d (succ-ℕ x) (is-nonzero-succ-ℕ x) H
If x
is nonzero, if d | x
and d ≠ x
, then d < x
le-div-succ-ℕ : (d x : ℕ) → div-ℕ d (succ-ℕ x) → d ≠ succ-ℕ x → le-ℕ d (succ-ℕ x) le-div-succ-ℕ d x H f = le-leq-neq-ℕ (leq-div-succ-ℕ d x H) f le-div-ℕ : (d x : ℕ) → is-nonzero-ℕ x → div-ℕ d x → d ≠ x → le-ℕ d x le-div-ℕ d x H K f = le-leq-neq-ℕ (leq-div-ℕ d x H K) f
1
divides any number
div-one-ℕ : (x : ℕ) → div-ℕ 1 x pr1 (div-one-ℕ x) = x pr2 (div-one-ℕ x) = right-unit-law-mul-ℕ x div-is-one-ℕ : (k x : ℕ) → is-one-ℕ k → div-ℕ k x div-is-one-ℕ .1 x refl = div-one-ℕ x
x | 1
implies x = 1
is-one-div-one-ℕ : (x : ℕ) → div-ℕ x 1 → is-one-ℕ x is-one-div-one-ℕ x H = antisymmetric-div-ℕ x 1 H (div-one-ℕ x)
Any number divides 0
div-zero-ℕ : (k : ℕ) → div-ℕ k 0 pr1 (div-zero-ℕ k) = 0 pr2 (div-zero-ℕ k) = left-zero-law-mul-ℕ k div-is-zero-ℕ : (k x : ℕ) → is-zero-ℕ x → div-ℕ k x div-is-zero-ℕ k .zero-ℕ refl = div-zero-ℕ k
0 | x
implies x = 0
and x | 1
implies x = 1
is-zero-div-zero-ℕ : (x : ℕ) → div-ℕ zero-ℕ x → is-zero-ℕ x is-zero-div-zero-ℕ x H = antisymmetric-div-ℕ x zero-ℕ (div-zero-ℕ x) H is-zero-is-zero-div-ℕ : (x y : ℕ) → div-ℕ x y → is-zero-ℕ x → is-zero-ℕ y is-zero-is-zero-div-ℕ .zero-ℕ y d refl = is-zero-div-zero-ℕ y d
Any divisor of a nonzero number is nonzero
is-nonzero-div-ℕ : (d x : ℕ) → div-ℕ d x → is-nonzero-ℕ x → is-nonzero-ℕ d is-nonzero-div-ℕ .zero-ℕ x H K refl = K (is-zero-div-zero-ℕ x H)
Any divisor of a number at least 1
is at least 1
leq-one-div-ℕ : (d x : ℕ) → div-ℕ d x → leq-ℕ 1 x → leq-ℕ 1 d leq-one-div-ℕ d x H L = leq-one-is-nonzero-ℕ d (is-nonzero-div-ℕ d x H (is-nonzero-leq-one-ℕ x L))
If x < d
and d | x
, then x
must be 0
is-zero-div-ℕ : (d x : ℕ) → le-ℕ x d → div-ℕ d x → is-zero-ℕ x is-zero-div-ℕ d zero-ℕ H D = refl is-zero-div-ℕ d (succ-ℕ x) H (pair (succ-ℕ k) p) = ex-falso ( contradiction-le-ℕ ( succ-ℕ x) d H ( concatenate-leq-eq-ℕ d ( leq-add-ℕ' d (k *ℕ d)) p))
If x
divides y
then x
divides any multiple of y
div-mul-ℕ : (k x y : ℕ) → div-ℕ x y → div-ℕ x (k *ℕ y) div-mul-ℕ k x y H = transitive-div-ℕ x y (k *ℕ y) (pair k refl) H div-mul-ℕ' : (k x y : ℕ) → div-ℕ x y → div-ℕ x (y *ℕ k) div-mul-ℕ' k x y H = tr (div-ℕ x) (commutative-mul-ℕ k y) (div-mul-ℕ k x y H)
A 3-for-2 property of division with respect to addition
div-add-ℕ : (d x y : ℕ) → div-ℕ d x → div-ℕ d y → div-ℕ d (x +ℕ y) pr1 (div-add-ℕ d x y (pair n p) (pair m q)) = n +ℕ m pr2 (div-add-ℕ d x y (pair n p) (pair m q)) = ( right-distributive-mul-add-ℕ n m d) ∙ ( ap-add-ℕ p q) div-left-summand-ℕ : (d x y : ℕ) → div-ℕ d y → div-ℕ d (x +ℕ y) → div-ℕ d x div-left-summand-ℕ zero-ℕ x y (pair m q) (pair n p) = pair zero-ℕ ( ( inv (right-zero-law-mul-ℕ n)) ∙ ( p ∙ (ap (x +ℕ_) ((inv q) ∙ (right-zero-law-mul-ℕ m))))) pr1 (div-left-summand-ℕ (succ-ℕ d) x y (pair m q) (pair n p)) = dist-ℕ m n pr2 (div-left-summand-ℕ (succ-ℕ d) x y (pair m q) (pair n p)) = is-injective-right-add-ℕ (m *ℕ (succ-ℕ d)) ( ( inv ( ( right-distributive-mul-add-ℕ m (dist-ℕ m n) (succ-ℕ d)) ∙ ( commutative-add-ℕ ( m *ℕ (succ-ℕ d)) ( (dist-ℕ m n) *ℕ (succ-ℕ d))))) ∙ ( ( ap ( _*ℕ (succ-ℕ d)) ( is-additive-right-inverse-dist-ℕ m n ( reflects-order-mul-ℕ d m n ( concatenate-eq-leq-eq-ℕ q ( leq-add-ℕ' y x) ( inv p))))) ∙ ( p ∙ (ap (x +ℕ_) (inv q))))) div-right-summand-ℕ : (d x y : ℕ) → div-ℕ d x → div-ℕ d (x +ℕ y) → div-ℕ d y div-right-summand-ℕ d x y H1 H2 = div-left-summand-ℕ d y x H1 (concatenate-div-eq-ℕ H2 (commutative-add-ℕ x y))
If d
divides both x
and x + 1
, then d = 1
is-one-div-ℕ : (x y : ℕ) → div-ℕ x y → div-ℕ x (succ-ℕ y) → is-one-ℕ x is-one-div-ℕ x y H K = is-one-div-one-ℕ x (div-right-summand-ℕ x y 1 H K)
Multiplication preserves divisibility
preserves-div-mul-ℕ : (k x y : ℕ) → div-ℕ x y → div-ℕ (k *ℕ x) (k *ℕ y) pr1 (preserves-div-mul-ℕ k x y (pair q p)) = q pr2 (preserves-div-mul-ℕ k x y (pair q p)) = ( inv (associative-mul-ℕ q k x)) ∙ ( ( ap (_*ℕ x) (commutative-mul-ℕ q k)) ∙ ( ( associative-mul-ℕ k q x) ∙ ( ap (k *ℕ_) p)))
Multiplication by a nonzero number reflects divisibility
reflects-div-mul-ℕ : (k x y : ℕ) → is-nonzero-ℕ k → div-ℕ (k *ℕ x) (k *ℕ y) → div-ℕ x y pr1 (reflects-div-mul-ℕ k x y H (pair q p)) = q pr2 (reflects-div-mul-ℕ k x y H (pair q p)) = is-injective-left-mul-ℕ k H ( ( inv (associative-mul-ℕ k q x)) ∙ ( ( ap (_*ℕ x) (commutative-mul-ℕ k q)) ∙ ( ( associative-mul-ℕ q k x) ∙ ( p))))
If a nonzero number d
divides y
, then dx
divides y
if and only if x
divides the quotient y/d
div-quotient-div-div-ℕ : (x y d : ℕ) (H : div-ℕ d y) → is-nonzero-ℕ d → div-ℕ (d *ℕ x) y → div-ℕ x (quotient-div-ℕ d y H) div-quotient-div-div-ℕ x y d H f K = reflects-div-mul-ℕ d x ( quotient-div-ℕ d y H) ( f) ( tr (div-ℕ (d *ℕ x)) (inv (eq-quotient-div-ℕ' d y H)) K) div-div-quotient-div-ℕ : (x y d : ℕ) (H : div-ℕ d y) → div-ℕ x (quotient-div-ℕ d y H) → div-ℕ (d *ℕ x) y div-div-quotient-div-ℕ x y d H K = tr ( div-ℕ (d *ℕ x)) ( eq-quotient-div-ℕ' d y H) ( preserves-div-mul-ℕ d x (quotient-div-ℕ d y H) K)
If d
divides a nonzero number x
, then the quotient x/d
is also nonzero
is-nonzero-quotient-div-ℕ : {d x : ℕ} (H : div-ℕ d x) → is-nonzero-ℕ x → is-nonzero-ℕ (quotient-div-ℕ d x H) is-nonzero-quotient-div-ℕ {d} {.(k *ℕ d)} (pair k refl) = is-nonzero-left-factor-mul-ℕ k d
If d
divides a number 1 ≤ x
, then 1 ≤ x/d
leq-one-quotient-div-ℕ : (d x : ℕ) (H : div-ℕ d x) → leq-ℕ 1 x → leq-ℕ 1 (quotient-div-ℕ d x H) leq-one-quotient-div-ℕ d x H K = leq-one-div-ℕ ( quotient-div-ℕ d x H) ( x) ( div-quotient-div-ℕ d x H) ( K)
a/a = 1
is-idempotent-quotient-div-ℕ : (a : ℕ) → is-nonzero-ℕ a → (H : div-ℕ a a) → is-one-ℕ (quotient-div-ℕ a a H) is-idempotent-quotient-div-ℕ zero-ℕ nz (u , p) = ex-falso (nz refl) is-idempotent-quotient-div-ℕ (succ-ℕ a) nz (u , p) = is-one-is-left-unit-mul-ℕ u a p
If b
divides a
and c
divides b
and c
is nonzero, then a/b · b/c = a/c
simplify-mul-quotient-div-ℕ : {a b c : ℕ} → is-nonzero-ℕ c → (H : div-ℕ b a) (K : div-ℕ c b) (L : div-ℕ c a) → ( (quotient-div-ℕ b a H) *ℕ (quotient-div-ℕ c b K)) = ( quotient-div-ℕ c a L) simplify-mul-quotient-div-ℕ {a} {b} {c} nz H K L = is-injective-right-mul-ℕ c nz ( equational-reasoning (a/b *ℕ b/c) *ℕ c = a/b *ℕ (b/c *ℕ c) by associative-mul-ℕ a/b b/c c = a/b *ℕ b by ap (a/b *ℕ_) (eq-quotient-div-ℕ c b K) = a by eq-quotient-div-ℕ b a H = a/c *ℕ c by inv (eq-quotient-div-ℕ c a L)) where a/b : ℕ a/b = quotient-div-ℕ b a H b/c : ℕ b/c = quotient-div-ℕ c b K a/c : ℕ a/c = quotient-div-ℕ c a L
If d | a
and d
is nonzero, then x | a/d
if and only if xd | a
simplify-div-quotient-div-ℕ : {a d x : ℕ} → is-nonzero-ℕ d → (H : div-ℕ d a) → (div-ℕ x (quotient-div-ℕ d a H)) ↔ (div-ℕ (x *ℕ d) a) pr1 (pr1 (simplify-div-quotient-div-ℕ nz H) (u , p)) = u pr2 (pr1 (simplify-div-quotient-div-ℕ {a} {d} {x} nz H) (u , p)) = equational-reasoning u *ℕ (x *ℕ d) = (u *ℕ x) *ℕ d by inv (associative-mul-ℕ u x d) = (quotient-div-ℕ d a H) *ℕ d by ap (_*ℕ d) p = a by eq-quotient-div-ℕ d a H pr1 (pr2 (simplify-div-quotient-div-ℕ nz H) (u , p)) = u pr2 (pr2 (simplify-div-quotient-div-ℕ {a} {d} {x} nz H) (u , p)) = is-injective-right-mul-ℕ d nz ( equational-reasoning (u *ℕ x) *ℕ d = u *ℕ (x *ℕ d) by associative-mul-ℕ u x d = a by p = (quotient-div-ℕ d a H) *ℕ d by inv (eq-quotient-div-ℕ d a H))
Suppose H : b | a
and K : c | b
, where c
is nonzero. If d
divides b/c
then d
divides a/c
div-quotient-div-div-quotient-div-ℕ : {a b c d : ℕ} → is-nonzero-ℕ c → (H : div-ℕ b a) (K : div-ℕ c b) (L : div-ℕ c a) → div-ℕ d (quotient-div-ℕ c b K) → div-ℕ d (quotient-div-ℕ c a L) div-quotient-div-div-quotient-div-ℕ {a} {b} {c} {d} nz H K L M = tr ( div-ℕ d) ( simplify-mul-quotient-div-ℕ nz H K L) ( div-mul-ℕ ( quotient-div-ℕ b a H) ( d) ( quotient-div-ℕ c b K) ( M))
If x
is nonzero and d | x
, then x/d = 1
if and only if d = x
is-one-quotient-div-ℕ : (d x : ℕ) → is-nonzero-ℕ x → (H : div-ℕ d x) → (d = x) → is-one-ℕ (quotient-div-ℕ d x H) is-one-quotient-div-ℕ d .d f H refl = is-idempotent-quotient-div-ℕ d f H eq-is-one-quotient-div-ℕ : (d x : ℕ) → (H : div-ℕ d x) → is-one-ℕ (quotient-div-ℕ d x H) → d = x eq-is-one-quotient-div-ℕ d x (.1 , q) refl = inv (left-unit-law-mul-ℕ d) ∙ q
If x
is nonzero and d | x
, then x/d = x
if and only if d = 1
compute-quotient-div-is-one-ℕ : (d x : ℕ) → (H : div-ℕ d x) → is-one-ℕ d → quotient-div-ℕ d x H = x compute-quotient-div-is-one-ℕ .1 x (u , q) refl = inv (right-unit-law-mul-ℕ u) ∙ q is-one-divisor-ℕ : (d x : ℕ) → is-nonzero-ℕ x → (H : div-ℕ d x) → quotient-div-ℕ d x H = x → is-one-ℕ d is-one-divisor-ℕ d x f (.x , q) refl = is-injective-left-mul-ℕ x f (q ∙ inv (right-unit-law-mul-ℕ x))
If x
is nonzero and d | x
is a nontrivial divisor, then x/d < x
le-quotient-div-ℕ : (d x : ℕ) → is-nonzero-ℕ x → (H : div-ℕ d x) → ¬ (is-one-ℕ d) → le-ℕ (quotient-div-ℕ d x H) x le-quotient-div-ℕ d x f H g = map-left-unit-law-coproduct-is-empty ( quotient-div-ℕ d x H = x) ( le-ℕ (quotient-div-ℕ d x H) x) ( map-neg (is-one-divisor-ℕ d x f H) g) ( eq-or-le-leq-ℕ ( quotient-div-ℕ d x H) ( x) ( leq-quotient-div-ℕ d x f H))
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).