Absolute convergence of series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2025-12-25.
module analysis.absolute-convergence-series-real-numbers where
Imports
open import analysis.absolute-convergence-series-real-banach-spaces open import analysis.convergent-series-real-banach-spaces open import analysis.convergent-series-real-numbers open import analysis.series-real-banach-spaces open import analysis.series-real-numbers open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import linear-algebra.real-banach-spaces open import real-numbers.absolute-value-real-numbers
Idea
A series Σ aₙ of
real numbers is said to
absolutely converge¶
if the series of absolute values Σ |aₙ|
converges.
Definition
module _ {l : Level} (σ : series-ℝ l) where map-abs-series-ℝ : series-ℝ l map-abs-series-ℝ = series-terms-ℝ (abs-ℝ ∘ term-series-ℝ σ) is-absolutely-convergent-prop-series-ℝ : Prop (lsuc l) is-absolutely-convergent-prop-series-ℝ = is-convergent-prop-series-ℝ map-abs-series-ℝ is-absolutely-convergent-series-ℝ : UU (lsuc l) is-absolutely-convergent-series-ℝ = type-Prop is-absolutely-convergent-prop-series-ℝ
Properties
If a series of real numbers is absolutely convergent, it is convergent
module _ {l : Level} (σ : series-ℝ l) where is-convergent-is-absolutely-convergent-series-ℝ : is-absolutely-convergent-series-ℝ σ → is-convergent-series-ℝ σ is-convergent-is-absolutely-convergent-series-ℝ H = is-convergent-real-is-convergent-real-banach-space-ℝ ( term-series-ℝ σ) ( is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space ( real-banach-space-ℝ l) ( series-terms-ℝ-Banach-Space ( real-banach-space-ℝ l) ( term-series-ℝ σ)) ( H))
See also
External links
- Absolute convergence on Wikipedia
Recent changes
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).