Similarity of nonnegative real numbers

Content created by Louis Wasserman.

Created on 2025-11-09.
Last modified on 2025-11-09.

module real-numbers.similarity-nonnegative-real-numbers where
Imports
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import real-numbers.nonnegative-real-numbers
open import real-numbers.similarity-real-numbers

Idea

Two nonnegative real numbers are similar if they are similar as real numbers.

Definition

Similarity of nonnegative real numbers

module _
  {l1 l2 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2)
  where

  sim-prop-ℝ⁰⁺ : Prop (l1  l2)
  sim-prop-ℝ⁰⁺ = sim-prop-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y)

  sim-ℝ⁰⁺ : UU (l1  l2)
  sim-ℝ⁰⁺ = sim-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y)

infix 6 _~ℝ⁰⁺_
_~ℝ⁰⁺_ : {l1 l2 : Level}  ℝ⁰⁺ l1  ℝ⁰⁺ l2  UU (l1  l2)
_~ℝ⁰⁺_ = sim-ℝ⁰⁺

sim-zero-prop-ℝ⁰⁺ : {l : Level}  ℝ⁰⁺ l  Prop l
sim-zero-prop-ℝ⁰⁺ = sim-prop-ℝ⁰⁺ zero-ℝ⁰⁺

sim-zero-ℝ⁰⁺ : {l : Level}  ℝ⁰⁺ l  UU l
sim-zero-ℝ⁰⁺ = sim-ℝ⁰⁺ zero-ℝ⁰⁺

eq-sim-ℝ⁰⁺ : {l : Level} (x y : ℝ⁰⁺ l)  sim-ℝ⁰⁺ x y  x  y
eq-sim-ℝ⁰⁺ x y x~y = eq-ℝ⁰⁺ x y (eq-sim-ℝ {x = real-ℝ⁰⁺ x} {y = real-ℝ⁰⁺ y} x~y)

Similarity is symmetric

abstract
  symmetric-sim-ℝ⁰⁺ :
    {l1 l2 : Level}  (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2)  x ~ℝ⁰⁺ y  y ~ℝ⁰⁺ x
  symmetric-sim-ℝ⁰⁺ _ _ = symmetric-sim-ℝ

Recent changes