Similarity of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2025-11-09.
Last modified on 2025-11-09.
module real-numbers.similarity-nonnegative-real-numbers where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import real-numbers.nonnegative-real-numbers open import real-numbers.similarity-real-numbers
Idea
Two nonnegative real numbers are similar¶ if they are similar as real numbers.
Definition
Similarity of nonnegative real numbers
module _ {l1 l2 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) where sim-prop-ℝ⁰⁺ : Prop (l1 ⊔ l2) sim-prop-ℝ⁰⁺ = sim-prop-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y) sim-ℝ⁰⁺ : UU (l1 ⊔ l2) sim-ℝ⁰⁺ = sim-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y) infix 6 _~ℝ⁰⁺_ _~ℝ⁰⁺_ : {l1 l2 : Level} → ℝ⁰⁺ l1 → ℝ⁰⁺ l2 → UU (l1 ⊔ l2) _~ℝ⁰⁺_ = sim-ℝ⁰⁺ sim-zero-prop-ℝ⁰⁺ : {l : Level} → ℝ⁰⁺ l → Prop l sim-zero-prop-ℝ⁰⁺ = sim-prop-ℝ⁰⁺ zero-ℝ⁰⁺ sim-zero-ℝ⁰⁺ : {l : Level} → ℝ⁰⁺ l → UU l sim-zero-ℝ⁰⁺ = sim-ℝ⁰⁺ zero-ℝ⁰⁺ eq-sim-ℝ⁰⁺ : {l : Level} (x y : ℝ⁰⁺ l) → sim-ℝ⁰⁺ x y → x = y eq-sim-ℝ⁰⁺ x y x~y = eq-ℝ⁰⁺ x y (eq-sim-ℝ {x = real-ℝ⁰⁺ x} {y = real-ℝ⁰⁺ y} x~y)
Similarity is symmetric
abstract symmetric-sim-ℝ⁰⁺ : {l1 l2 : Level} → (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) → x ~ℝ⁰⁺ y → y ~ℝ⁰⁺ x symmetric-sim-ℝ⁰⁺ _ _ = symmetric-sim-ℝ
Recent changes
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).