Superglobular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.superglobular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.binary-dependent-reflexive-globular-types open import globular-types.globular-types open import globular-types.points-reflexive-globular-types open import globular-types.pointwise-extensions-binary-families-reflexive-globular-types open import globular-types.reflexive-globular-equivalences open import globular-types.reflexive-globular-types
Disclaimer. The contents of this file are experimental, and likely to be changed or reconsidered.
Idea
An superglobular type¶ is a
reflexive globular type G
such
that the binary family of globular types
G' : G₀ → G₀ → Globular-Type
of 1-cells and higher cells
extends pointwise
to a
binary dependent globular type.
More specifically, a superglobular type consists of a reflexive globular type
G
equipped with a binary dependent globular type
H : Binary-Dependent-Globular-Type l2 l2 G G
and a family of globular equivalences
(x y : G₀) → ev-point H x y ≃ G' x y.
The low-dimensional data of a superglobular type is therefore as follows:
G₀ : Type
G₁ : (x y : G₀) → Type
H₀ : (x y : G₀) → Type
e₀ : {x y : G₀} → H₀ x y ≃ G₀ x y
refl G : (x : G₀) → G₁ x x
G₂ : {x y : G₀} (s t : G₁ x y) → Type
H₁ : {x x' y y' : G₀} → G₁ x x' → G₁ y y' → H₀ x y → H₀ x' y' → Type
e₁ : {x y : G₀} {s t : H₀ x y} → H₁ (refl G x) (refl G y) s t ≃ G₂ (e₀ s) (e₀ t)
refl G : {x y : G₀} (s : G₁ x y) → G₂ s s
G₃ : {x y : G₀} {s t : G₁ x y} (u v : G₂ s t) → Type
H₂ : {x x' y y' : G₀} {s s' : G₁ x x'} {t t' : G₁ y y'}
(p : G₂ s s') (q : G₂ t t') → H₁ s t → H₁ s' t' → Type
e₂ : {x y : G₀} {s t : H₀ x y} {u v : H₁ (refl G x) (refl G y) s t} →
H₂ (refl G x) (refl G y) u v ≃ G₃ (e₁ u) (e₁ v)
Note that the type of pairs (Gₙ₊₁ , eₙ)
in this structure is
contractible. An equivalent way of
presenting the low-dimensional data of a superglobular type is therefore:
G₀ : Type
H₀ : (x y : G₀) → Type
refl G : (x : G₀) → H₀ x x
H₁ : {x x' y y' : G₀} → H₁ x x' → H₁ y y' → H₀ x y → H₀ x' y' → Type
refl G : {x y : G₀} (s : H₀ x y) → H₁ (refl G x) (refl G y) s s
H₂ : {x x' y y' : G₀} {s s' : H₁ x x'} {t t' : H₁ y y'}
(p : H₂ s s') (q : H₂ t t') → H₁ s t → H₁ s' t' → Type
Definitions
The predicate of being a superglobular type
module _ {l1 l2 : Level} (l3 l4 : Level) (G : Reflexive-Globular-Type l1 l2) where is-superglobular-Reflexive-Globular-Type : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4) is-superglobular-Reflexive-Globular-Type = pointwise-extension-binary-family-reflexive-globular-types l3 l4 G G ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G) module _ {l1 l2 l3 l4 : Level} {G : Reflexive-Globular-Type l1 l2} (H : is-superglobular-Reflexive-Globular-Type l3 l4 G) where 1-cell-binary-dependent-reflexive-globular-type-is-superglobular-Reflexive-Globular-Type : Binary-Dependent-Reflexive-Globular-Type l3 l4 G G 1-cell-binary-dependent-reflexive-globular-type-is-superglobular-Reflexive-Globular-Type = pr1 H reflexive-globular-equiv-is-superglobular-Reflexive-Globular-Type : (x y : point-Reflexive-Globular-Type G) → reflexive-globular-equiv ( ev-point-Binary-Dependent-Reflexive-Globular-Type G G ( 1-cell-binary-dependent-reflexive-globular-type-is-superglobular-Reflexive-Globular-Type) ( x) ( y)) ( 1-cell-reflexive-globular-type-Reflexive-Globular-Type G x y) reflexive-globular-equiv-is-superglobular-Reflexive-Globular-Type = pr2 H
Superglobular types
record Superglobular-Type (l1 l2 l3 l4 : Level) : UU (lsuc l1 ⊔ lsuc l2 ⊔ lsuc l3 ⊔ lsuc l4) where field reflexive-globular-type-Superglobular-Type : Reflexive-Globular-Type l1 l2 globular-type-Superglobular-Type : Globular-Type l1 l2 globular-type-Superglobular-Type = globular-type-Reflexive-Globular-Type reflexive-globular-type-Superglobular-Type 0-cell-Superglobular-Type : UU l1 0-cell-Superglobular-Type = 0-cell-Reflexive-Globular-Type reflexive-globular-type-Superglobular-Type point-Superglobular-Type : UU l1 point-Superglobular-Type = point-Reflexive-Globular-Type reflexive-globular-type-Superglobular-Type 1-cell-reflexive-globular-type-Superglobular-Type : (x y : 0-cell-Superglobular-Type) → Reflexive-Globular-Type l2 l2 1-cell-reflexive-globular-type-Superglobular-Type = 1-cell-reflexive-globular-type-Reflexive-Globular-Type reflexive-globular-type-Superglobular-Type field is-superglobular-Superglobular-Type : is-superglobular-Reflexive-Globular-Type l3 l4 reflexive-globular-type-Superglobular-Type 1-cell-binary-dependent-reflexive-globular-type-Superglobular-Type : Binary-Dependent-Reflexive-Globular-Type l3 l4 reflexive-globular-type-Superglobular-Type reflexive-globular-type-Superglobular-Type 1-cell-binary-dependent-reflexive-globular-type-Superglobular-Type = 1-cell-binary-dependent-reflexive-globular-type-is-superglobular-Reflexive-Globular-Type is-superglobular-Superglobular-Type reflexive-globular-equiv-Superglobular-Type : (x y : point-Superglobular-Type) → reflexive-globular-equiv ( ev-point-Binary-Dependent-Reflexive-Globular-Type ( reflexive-globular-type-Superglobular-Type) ( reflexive-globular-type-Superglobular-Type) ( 1-cell-binary-dependent-reflexive-globular-type-Superglobular-Type) ( x) ( y)) ( 1-cell-reflexive-globular-type-Superglobular-Type x y) reflexive-globular-equiv-Superglobular-Type = reflexive-globular-equiv-is-superglobular-Reflexive-Globular-Type is-superglobular-Superglobular-Type
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).