The group of integers
Content created by Egbert Rijke, Jonathan Prieto-Cubides, Fredrik Bakke and Gregor Perčič.
Created on 2022-03-18.
Last modified on 2023-09-21.
module elementary-number-theory.group-of-integers where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.integers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups
Idea
The type of integers, equipped with a zero-element, addition, and negatives, forms a group.
Definition
ℤ-Semigroup : Semigroup lzero pr1 ℤ-Semigroup = ℤ-Set pr1 (pr2 ℤ-Semigroup) = add-ℤ pr2 (pr2 ℤ-Semigroup) = associative-add-ℤ ℤ-Group : Group lzero pr1 ℤ-Group = ℤ-Semigroup pr1 (pr1 (pr2 ℤ-Group)) = zero-ℤ pr1 (pr2 (pr1 (pr2 ℤ-Group))) = left-unit-law-add-ℤ pr2 (pr2 (pr1 (pr2 ℤ-Group))) = right-unit-law-add-ℤ pr1 (pr2 (pr2 ℤ-Group)) = neg-ℤ pr1 (pr2 (pr2 (pr2 ℤ-Group))) = left-inverse-law-add-ℤ pr2 (pr2 (pr2 (pr2 ℤ-Group))) = right-inverse-law-add-ℤ ℤ-Ab : Ab lzero pr1 ℤ-Ab = ℤ-Group pr2 ℤ-Ab = commutative-add-ℤ
Recent changes
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).