The group of integers

Content created by Egbert Rijke, Jonathan Prieto-Cubides, Fredrik Bakke and Gregor Perčič.

Created on 2022-03-18.
Last modified on 2023-09-21.

module elementary-number-theory.group-of-integers where
Imports
open import elementary-number-theory.addition-integers
open import elementary-number-theory.integers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.groups
open import group-theory.semigroups

Idea

The type of integers, equipped with a zero-element, addition, and negatives, forms a group.

Definition

ℤ-Semigroup : Semigroup lzero
pr1 ℤ-Semigroup = ℤ-Set
pr1 (pr2 ℤ-Semigroup) = add-ℤ
pr2 (pr2 ℤ-Semigroup) = associative-add-ℤ

ℤ-Group : Group lzero
pr1 ℤ-Group = ℤ-Semigroup
pr1 (pr1 (pr2 ℤ-Group)) = zero-ℤ
pr1 (pr2 (pr1 (pr2 ℤ-Group))) = left-unit-law-add-ℤ
pr2 (pr2 (pr1 (pr2 ℤ-Group))) = right-unit-law-add-ℤ
pr1 (pr2 (pr2 ℤ-Group)) = neg-ℤ
pr1 (pr2 (pr2 (pr2 ℤ-Group))) = left-inverse-law-add-ℤ
pr2 (pr2 (pr2 (pr2 ℤ-Group))) = right-inverse-law-add-ℤ

ℤ-Ab : Ab lzero
pr1 ℤ-Ab = ℤ-Group
pr2 ℤ-Ab = commutative-add-ℤ

Recent changes