Positive elements in the type of increasing binary sequences
Content created by Fredrik Bakke.
Created on 2025-10-25.
Last modified on 2025-10-25.
module set-theory.positive-elements-increasing-binary-sequences where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.booleans open import foundation.constant-maps open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.inequality-booleans open import foundation.inhabited-types open import foundation.negation open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import foundation-core.identity-types open import set-theory.increasing-binary-sequences open import set-theory.strict-lower-bounds-increasing-binary-sequences
Idea
An increasing binary sequence x
is
positive¶
if x₀ is false.
Definitions
The predicate on increasing binary sequences of being positive
is-positive-ℕ∞↗ : ℕ∞↗ → UU lzero is-positive-ℕ∞↗ = is-strictly-bounded-below-ℕ∞↗ 0 abstract is-prop-is-positive-ℕ∞↗ : (x : ℕ∞↗) → is-prop (is-positive-ℕ∞↗ x) is-prop-is-positive-ℕ∞↗ = is-prop-is-strictly-bounded-below-ℕ∞↗ 0 is-positive-prop-ℕ∞↗ : ℕ∞↗ → Prop lzero is-positive-prop-ℕ∞↗ = is-strictly-bounded-below-prop-ℕ∞↗ 0
The type of positive increasing binary sequences
positive-ℕ∞↗ : UU lzero positive-ℕ∞↗ = Σ ℕ∞↗ is-positive-ℕ∞↗ ℕ∞↗₊ : UU lzero ℕ∞↗₊ = positive-ℕ∞↗
Properties
If an increasing binary sequence is strictly bounded below, then it is positive
is-positive-is-strictly-bounded-below-ℕ∞↗ : (x : ℕ∞↗) (n : ℕ) → is-strictly-bounded-below-ℕ∞↗ n x → is-positive-ℕ∞↗ x is-positive-is-strictly-bounded-below-ℕ∞↗ x 0 p = p is-positive-is-strictly-bounded-below-ℕ∞↗ x (succ-ℕ n) p = is-positive-is-strictly-bounded-below-ℕ∞↗ x n ( is-strictly-bounded-below-is-strictly-bounded-below-succ-ℕ∞↗ x n p)
Recent changes
- 2025-10-25. Fredrik Bakke. Logic, equality, apartness, and compactness (#1264).