Sums of finite sequences of elements in semigroups
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
module group-theory.sums-of-finite-sequences-of-elements-semigroups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import group-theory.semigroups open import linear-algebra.finite-sequences-in-semigroups open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a semigroup G to
any nonempty finite sequence of elements of G.
We use additive terminology consistently with the linear algebra definition of finite sequences in semigroups despite the use of multiplicative terminology for semigroups in general.
Definition
sum-fin-sequence-type-Semigroup : {l : Level} (G : Semigroup l) (n : ℕ) → fin-sequence-type-Semigroup G (succ-ℕ n) → type-Semigroup G sum-fin-sequence-type-Semigroup G zero-ℕ f = f (inr star) sum-fin-sequence-type-Semigroup G (succ-ℕ n) f = mul-Semigroup G ( sum-fin-sequence-type-Semigroup G n (f ∘ inl-Fin (succ-ℕ n))) ( f (inr star))
Properties
Sums are homotopy invariant
module _ {l : Level} (G : Semigroup l) where htpy-sum-fin-sequence-type-Semigroup : (n : ℕ) → {f g : fin-sequence-type-Semigroup G (succ-ℕ n)} → f ~ g → sum-fin-sequence-type-Semigroup G n f = sum-fin-sequence-type-Semigroup G n g htpy-sum-fin-sequence-type-Semigroup n f~g = ap (sum-fin-sequence-type-Semigroup G n) (eq-htpy f~g)
Splitting sums of succ-ℕ n + succ-ℕ m elements into a sum of succ-ℕ n elements and a sum of succ-ℕ m elements
abstract split-sum-fin-sequence-type-Semigroup : {l : Level} (G : Semigroup l) (n m : ℕ) (f : fin-sequence-type-Semigroup G (succ-ℕ n +ℕ succ-ℕ m)) → sum-fin-sequence-type-Semigroup G (succ-ℕ n +ℕ m) f = mul-Semigroup G ( sum-fin-sequence-type-Semigroup G n ( f ∘ inl-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) ( sum-fin-sequence-type-Semigroup G m ( f ∘ inr-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) split-sum-fin-sequence-type-Semigroup G n zero-ℕ f = refl split-sum-fin-sequence-type-Semigroup G n (succ-ℕ m) f = ap-mul-Semigroup G ( split-sum-fin-sequence-type-Semigroup G n m (f ∘ inl)) ( refl) ∙ associative-mul-Semigroup G _ _ _
External links
- Sum at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. Commutative semigroups (#1494).