Sums of finite sequences of elements in semigroups
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
module group-theory.sums-of-finite-sequences-of-elements-semigroups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import group-theory.semigroups open import linear-algebra.finite-sequences-in-semigroups open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a semigroup G
to
any nonempty finite sequence of elements of G
.
We use additive terminology consistently with the linear algebra definition of finite sequences in semigroups despite the use of multiplicative terminology for semigroups in general.
Definition
sum-fin-sequence-type-Semigroup : {l : Level} (G : Semigroup l) (n : ℕ) → fin-sequence-type-Semigroup G (succ-ℕ n) → type-Semigroup G sum-fin-sequence-type-Semigroup G zero-ℕ f = f (inr star) sum-fin-sequence-type-Semigroup G (succ-ℕ n) f = mul-Semigroup G ( sum-fin-sequence-type-Semigroup G n (f ∘ inl-Fin (succ-ℕ n))) ( f (inr star))
Properties
Sums are homotopy invariant
module _ {l : Level} (G : Semigroup l) where htpy-sum-fin-sequence-type-Semigroup : (n : ℕ) → {f g : fin-sequence-type-Semigroup G (succ-ℕ n)} → f ~ g → sum-fin-sequence-type-Semigroup G n f = sum-fin-sequence-type-Semigroup G n g htpy-sum-fin-sequence-type-Semigroup n f~g = ap (sum-fin-sequence-type-Semigroup G n) (eq-htpy f~g)
Splitting sums of succ-ℕ n + succ-ℕ m
elements into a sum of succ-ℕ n
elements and a sum of succ-ℕ m
elements
abstract split-sum-fin-sequence-type-Semigroup : {l : Level} (G : Semigroup l) (n m : ℕ) (f : fin-sequence-type-Semigroup G (succ-ℕ n +ℕ succ-ℕ m)) → sum-fin-sequence-type-Semigroup G (succ-ℕ n +ℕ m) f = mul-Semigroup G ( sum-fin-sequence-type-Semigroup G n ( f ∘ inl-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) ( sum-fin-sequence-type-Semigroup G m ( f ∘ inr-coproduct-Fin (succ-ℕ n) (succ-ℕ m))) split-sum-fin-sequence-type-Semigroup G n zero-ℕ f = refl split-sum-fin-sequence-type-Semigroup G n (succ-ℕ m) f = ap-mul-Semigroup G ( split-sum-fin-sequence-type-Semigroup G n m (f ∘ inl)) ( refl) ∙ associative-mul-Semigroup G _ _ _
External links
- Sum at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. Commutative semigroups (#1494).