Sums of finite sequences of elements in semigroups

Content created by Louis Wasserman.

Created on 2025-08-31.
Last modified on 2025-08-31.

module group-theory.sums-of-finite-sequences-of-elements-semigroups where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.unit-type
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import group-theory.semigroups

open import linear-algebra.finite-sequences-in-semigroups

open import univalent-combinatorics.coproduct-types
open import univalent-combinatorics.standard-finite-types

Idea

The sum operation extends the binary operation on a semigroup G to any nonempty finite sequence of elements of G.

We use additive terminology consistently with the linear algebra definition of finite sequences in semigroups despite the use of multiplicative terminology for semigroups in general.

Definition

sum-fin-sequence-type-Semigroup :
  {l : Level} (G : Semigroup l) (n : ) 
  fin-sequence-type-Semigroup G (succ-ℕ n)  type-Semigroup G
sum-fin-sequence-type-Semigroup G zero-ℕ f = f (inr star)
sum-fin-sequence-type-Semigroup G (succ-ℕ n) f =
  mul-Semigroup G
    ( sum-fin-sequence-type-Semigroup G n (f  inl-Fin (succ-ℕ n)))
    ( f (inr star))

Properties

Sums are homotopy invariant

module _
  {l : Level} (G : Semigroup l)
  where

  htpy-sum-fin-sequence-type-Semigroup :
    (n : )  {f g : fin-sequence-type-Semigroup G (succ-ℕ n)} 
    f ~ g 
    sum-fin-sequence-type-Semigroup G n f 
    sum-fin-sequence-type-Semigroup G n g
  htpy-sum-fin-sequence-type-Semigroup n f~g =
    ap (sum-fin-sequence-type-Semigroup G n) (eq-htpy f~g)

Splitting sums of succ-ℕ n + succ-ℕ m elements into a sum of succ-ℕ n elements and a sum of succ-ℕ m elements

abstract
  split-sum-fin-sequence-type-Semigroup :
    {l : Level} (G : Semigroup l)
    (n m : ) (f : fin-sequence-type-Semigroup G (succ-ℕ n +ℕ succ-ℕ m)) 
    sum-fin-sequence-type-Semigroup G (succ-ℕ n +ℕ m) f 
    mul-Semigroup G
      ( sum-fin-sequence-type-Semigroup G n
        ( f  inl-coproduct-Fin (succ-ℕ n) (succ-ℕ m)))
      ( sum-fin-sequence-type-Semigroup G m
        ( f  inr-coproduct-Fin (succ-ℕ n) (succ-ℕ m)))
  split-sum-fin-sequence-type-Semigroup G n zero-ℕ f = refl
  split-sum-fin-sequence-type-Semigroup G n (succ-ℕ m) f =
    ap-mul-Semigroup G
      ( split-sum-fin-sequence-type-Semigroup G n m (f  inl))
      ( refl) 
    associative-mul-Semigroup G _ _ _
  • Sum at Wikidata

Recent changes