Large quotient locales
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-12.
Last modified on 2024-04-11.
module order-theory.large-quotient-locales where
Imports
open import foundation.identity-types open import foundation.large-binary-relations open import foundation.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-locales open import order-theory.large-meet-semilattices open import order-theory.large-meet-subsemilattices open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.large-subframes open import order-theory.large-subposets open import order-theory.large-subpreorders open import order-theory.large-subsuplattices open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.top-elements-large-posets
Idea
A large quotient locale of a large locale
L
is by duality just a large subframe of
L
.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} (δ : Level → Level) (L : Large-Locale α β γ) where Large-Quotient-Locale : UUω Large-Quotient-Locale = Large-Subframe δ L module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} {δ : Level → Level} (L : Large-Locale α β γ) (Q : Large-Quotient-Locale δ L) where large-subposet-Large-Quotient-Locale : Large-Subposet δ (large-poset-Large-Locale L) large-subposet-Large-Quotient-Locale = large-subposet-Large-Subframe Q is-closed-under-meets-Large-Quotient-Locale : is-closed-under-meets-Large-Subposet ( large-meet-semilattice-Large-Locale L) ( large-subposet-Large-Quotient-Locale) is-closed-under-meets-Large-Quotient-Locale = is-closed-under-meets-Large-Subframe Q contains-top-Large-Quotient-Locale : contains-top-Large-Subposet ( large-meet-semilattice-Large-Locale L) ( large-subposet-Large-Quotient-Locale) contains-top-Large-Quotient-Locale = contains-top-Large-Subframe Q is-closed-under-sup-Large-Quotient-Locale : is-closed-under-sup-Large-Subposet ( large-suplattice-Large-Locale L) ( large-subposet-Large-Quotient-Locale) is-closed-under-sup-Large-Quotient-Locale = is-closed-under-sup-Large-Subframe Q large-poset-Large-Quotient-Locale : Large-Poset (λ l → α l ⊔ δ l) β large-poset-Large-Quotient-Locale = large-poset-Large-Subframe L Q large-subpreorder-Large-Quotient-Locale : Large-Subpreorder δ (large-preorder-Large-Locale L) large-subpreorder-Large-Quotient-Locale = large-subpreorder-Large-Subframe L Q large-preorder-Large-Quotient-Locale : Large-Preorder (λ l → α l ⊔ δ l) (λ l1 l2 → β l1 l2) large-preorder-Large-Quotient-Locale = large-preorder-Large-Subframe L Q is-in-Large-Quotient-Locale : {l1 : Level} → type-Large-Locale L l1 → UU (δ l1) is-in-Large-Quotient-Locale = is-in-Large-Subframe L Q type-Large-Quotient-Locale : (l1 : Level) → UU (α l1 ⊔ δ l1) type-Large-Quotient-Locale = type-Large-Subframe L Q leq-prop-Large-Quotient-Locale : Large-Relation-Prop β type-Large-Quotient-Locale leq-prop-Large-Quotient-Locale = leq-prop-Large-Subframe L Q leq-Large-Quotient-Locale : Large-Relation β type-Large-Quotient-Locale leq-Large-Quotient-Locale = leq-Large-Subframe L Q is-prop-leq-Large-Quotient-Locale : is-prop-Large-Relation type-Large-Quotient-Locale leq-Large-Quotient-Locale is-prop-leq-Large-Quotient-Locale = is-prop-leq-Large-Subframe L Q refl-leq-Large-Quotient-Locale : is-reflexive-Large-Relation ( type-Large-Quotient-Locale) ( leq-Large-Quotient-Locale) refl-leq-Large-Quotient-Locale = refl-leq-Large-Subframe L Q transitive-leq-Large-Quotient-Locale : is-transitive-Large-Relation ( type-Large-Quotient-Locale) ( leq-Large-Quotient-Locale) transitive-leq-Large-Quotient-Locale = transitive-leq-Large-Subframe L Q antisymmetric-leq-Large-Quotient-Locale : is-antisymmetric-Large-Relation ( type-Large-Quotient-Locale) ( leq-Large-Quotient-Locale) antisymmetric-leq-Large-Quotient-Locale = antisymmetric-leq-Large-Subframe L Q is-closed-under-sim-Large-Quotient-Locale : {l1 l2 : Level} (x : type-Large-Locale L l1) (y : type-Large-Locale L l2) → leq-Large-Locale L x y → leq-Large-Locale L y x → is-in-Large-Quotient-Locale x → is-in-Large-Quotient-Locale y is-closed-under-sim-Large-Quotient-Locale = is-closed-under-sim-Large-Subframe L Q meet-Large-Quotient-Locale : {l1 l2 : Level} (x : type-Large-Quotient-Locale l1) (y : type-Large-Quotient-Locale l2) → type-Large-Quotient-Locale (l1 ⊔ l2) meet-Large-Quotient-Locale = meet-Large-Subframe L Q is-greatest-binary-lower-bound-meet-Large-Quotient-Locale : {l1 l2 : Level} (x : type-Large-Quotient-Locale l1) (y : type-Large-Quotient-Locale l2) → is-greatest-binary-lower-bound-Large-Poset ( large-poset-Large-Quotient-Locale) ( x) ( y) ( meet-Large-Quotient-Locale x y) is-greatest-binary-lower-bound-meet-Large-Quotient-Locale = is-greatest-binary-lower-bound-meet-Large-Subframe L Q has-meets-Large-Quotient-Locale : has-meets-Large-Poset ( large-poset-Large-Quotient-Locale) has-meets-Large-Quotient-Locale = has-meets-Large-Subframe L Q top-Large-Quotient-Locale : type-Large-Quotient-Locale lzero top-Large-Quotient-Locale = top-Large-Subframe L Q is-top-element-top-Large-Quotient-Locale : {l1 : Level} (x : type-Large-Quotient-Locale l1) → leq-Large-Quotient-Locale x top-Large-Quotient-Locale is-top-element-top-Large-Quotient-Locale = is-top-element-top-Large-Subframe L Q has-top-element-Large-Quotient-Locale : has-top-element-Large-Poset ( large-poset-Large-Quotient-Locale) has-top-element-Large-Quotient-Locale = has-top-element-Large-Subframe L Q is-large-meet-semilattice-Large-Quotient-Locale : is-large-meet-semilattice-Large-Poset ( large-poset-Large-Quotient-Locale) is-large-meet-semilattice-Large-Quotient-Locale = is-large-meet-semilattice-Large-Subframe L Q large-meet-semilattice-Large-Quotient-Locale : Large-Meet-Semilattice (λ l → α l ⊔ δ l) β large-meet-semilattice-Large-Quotient-Locale = large-meet-semilattice-Large-Subframe L Q sup-Large-Quotient-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Quotient-Locale l2) → type-Large-Quotient-Locale (γ ⊔ l1 ⊔ l2) sup-Large-Quotient-Locale = sup-Large-Subframe L Q is-least-upper-bound-sup-Large-Quotient-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Quotient-Locale l2) → is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-Large-Quotient-Locale) ( x) ( sup-Large-Quotient-Locale x) is-least-upper-bound-sup-Large-Quotient-Locale = is-least-upper-bound-sup-Large-Subframe L Q is-large-suplattice-Large-Quotient-Locale : is-large-suplattice-Large-Poset γ (large-poset-Large-Quotient-Locale) is-large-suplattice-Large-Quotient-Locale = is-large-suplattice-Large-Subframe L Q large-suplattice-Large-Quotient-Locale : Large-Suplattice (λ l → α l ⊔ δ l) β γ large-suplattice-Large-Quotient-Locale = large-suplattice-Large-Subframe L Q distributive-meet-sup-Large-Quotient-Locale : {l1 l2 l3 : Level} (x : type-Large-Quotient-Locale l1) {I : UU l2} (y : I → type-Large-Quotient-Locale l3) → meet-Large-Quotient-Locale x (sup-Large-Quotient-Locale y) = sup-Large-Quotient-Locale (λ i → meet-Large-Quotient-Locale x (y i)) distributive-meet-sup-Large-Quotient-Locale = distributive-meet-sup-Large-Subframe L Q large-locale-Large-Quotient-Locale : Large-Locale (λ l → α l ⊔ δ l) β γ large-locale-Large-Quotient-Locale = large-frame-Large-Subframe L Q
Recent changes
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).